Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourteen parameters pH, DO, BOD, PO4, NO3,Ca, Mg, TH, K, Na, SO4,Cl, EC, Alk. The results indicated that the best correlation coefficient is 86.5% for BOD, and the most important parameter is Chloride Cl, and the best correlation coefficient is 95.4% for TDS and the most important parameters are total hardness TH and electrical conductivity EC, according to direct relation between these parameters and TDS.
This study was conducted in Diyala province for renal failure patients during the periods August 2015 - April 2016. Hundred renal failure patients were enrolled in the study after diagnosis by the consultant physician at Ibn-Sina Center for Dialysis in Baquba Teaching Hospital according to criteria adopted by the World Health Organization for diagnosis of renal failure disease. The number of males in patient’s sample was 61 (61%) and females was 39 (39%) with an age range of 10 – 88 year (44.7 ± 22.1 year). In addition, the study included 50 apparently healthy individuals and considered as a group control, in which the number of males and females was similar (25 individual), with an age range of 18 – 88 year (51.7 ± 17.3 year). The
... Show MoreZnO organic hybrid junction (electroluminescence EL device) was fabricated using phase segregation method. ZnO-nanoparticle (NPs) was prepared as a colloidal by self–assembly method of Zinc acetate solution with KOH solution. Nanoparticle is employed to form organic-inorganic hybrid film and generate white light emission, while N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’-diamine (TPD) and polymethyl methacrylate (PMMA) are adopted as the organic matrices. ZnO NPs was used to fabricate TPD: PMMA: ZnO NPs hybrid junction device. The photoluminescence (PL) and electroluminescence (EL) spectra of the TPD: PMMA: ZnO NPs hybrid device provided a broad emission band covering entirely the visible spectrum (∼350-∼700
... Show MoreThe aim of the research is to find out the effect of applying classroom assessment techniques (CATs) on both mathematical and logical thinking among fourth-grade scientific students. In pursuit of the research objectives, the experimental method was used, and the quasi-experimental design was used for two equivalent groups, one control group taught in the traditional way and the other experimental taught according to the techniques of classroom structural evaluation. The research sample consisted of (44) students from the fourth scientific grade who were intentionally chosen after ensuring their equivalence in several factors, most notably chronologi-cal age and the level of mathematics, and they were distributed equally among the t
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreThe objective of the study was to predict crop coefficient (K) values for cucumber inside the greenhouse during the growing season 2014, using watermarks gypsum blocks and atmometer c apparatus during the growing stages and to compare the predicted values of the crop coefficient with different methods and approaches. The study was conducted in the greenhouses field within Al-Mahawil Township, 70 km south of Baghdad, Iraq. The watermarks soil water sensors and atmometer apparatus were used to measure crop evapotranspiration and reference evapotranspiration on daily basis, respectively. The comparison and the statistical analysis between the calculated K in this study and values obtained from greenhouse gave a good agreement. The root mean
... Show MoreEconomic organizations operate in a dynamic environment, which necessitates the use of quantitative techniques to make their decisions. Here, the role of forecasting production plans emerges. So, this study aims to the analysis of the results of applying forecasting methods to production plans for the past years, in the Diyala State Company for Electrical Industries.
The Diyala State Company for Electrical Industries was chosen as a field of research for its role in providing distinguished products as well as the development and growth of its products and quality, and because it produces many products, and the study period was limited to ten years, from 2010 to 2019. This study used the descriptive approa
... Show More