Explainable Artificial Intelligence (XAI) techniques enable transparency and trust in automated visual inspection systems by making black-box machine learning models understandable. While XAI has been widely applied, prior reviews have not addressed the specific demands of industrial and medical inspection tasks. This paper reviews studies applying XAI techniques to visual inspection across industrial and medical domains. A systematic search was conducted in IEEE Xplore, Scopus, PubMed, arXiv, and Web of Science for studies published between 2014 and 2025, with inclusion criteria requiring the application of XAI in inspection tasks using public or domain-specific datasets. From an initial pool of studies, 75 were included and categorized into post-hoc and intrinsic, which were then evaluated with respect to fidelity, robustness, complexity, and localization accuracy. Results show that gradient- and propagation-based methods offer efficient visual explanations suitable for near real-time inspection, though with coarse localization, while perturbation-based and surrogate-model methods provide more detailed attributions at higher computational cost but with reduced robustness. In addition, prototype-based networks and self-attention architectures illustrate trade-offs between interpretability and predictive performance. Selecting the most effective XAI method is not one-size-fits-all; it depends on the dataset, latency, and interpretability needs. This review introduces a unified taxonomy of XAI methods for visual inspection, compares different approaches in both industrial and medical domains using standardized metrics, and proposes a task-based selection workflow to guide practitioners in choosing the optimal method. Compared to prior reviews, this work offers a cross-domain comparative analysis grounded in quantitative benchmarks and outlines directions for standardized evaluation and user-centered validation.
Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreThe research is concerned with studying the characteristics of Sustainable Architecture and Green Architecture, as a general research methodology related to the specific field of architecture, based on the differentiation between two generic concepts, Sustainability and Greening, to form the framework of the research specific methodology, where both concepts seem to be extremely overlapping for research centers, individuals, and relevant organizations. In this regard, the research tend towards searching their characteristics and to clearly differentiates between the two terms, particularly in architecture, where the research seeks understanding sustainable and green architectures, how they are so close or so far, and the
... Show MoreIn this paper, the system of the power plant has been investigated as a special type of industrial systems, which has a significant role in improving societies since the electrical energy has entered all kinds of industries, and it is considered as the artery of modern life.
The aim of this research is to construct a programming system, which could be used to identify the most important failure modes that are occur in a steam type of power plants. Also the effects and reasons of each failure mode could be analyzed through the usage of this programming system reaching to the basic events (main reasons) that causing each failure mode. The construction of this system for FMEA is dependi
... Show MoreCharacterization of the heterogonous reservoir is complex representation and evaluation of petrophysical properties and application of the relationships between porosity-permeability within the framework of hydraulic flow units is used to estimate permeability in un-cored wells. Techniques of flow unit or hydraulic flow unit (HFU) divided the reservoir into zones laterally and vertically which can be managed and control fluid flow within flow unit and considerably is entirely different with other flow units through reservoir. Each flow unit can be distinguished by applying the relationships of flow zone indicator (FZI) method. Supporting the relationship between porosity and permeability by using flow zone indictor is ca
... Show MoreOur research deals with the role of theatrical decoration in creating visual thumbs and the effect achieved as a result in the theatrical presentation in terms of supporting the idea of centralization of the dramatic construction of the show, as the researcher emphasizes that this topic has begun with a new horizon removed many technical concepts and knowledge in the theater.
Horizon knowledge and discoveries based on the structures of light and sight to achieve an existing transformation from steel to ethereal. According to these new concepts, systems other than those based on old methods of presentation have been formed.
In light of this, the researcher divided his research into:
First: the problem of research and the need fo