For over a century, the global consumption of asphalt binder in asphalt mixture production has been substantial. In the Heet region (west of Iraq), two distinct forms of natural asphalt (NA) deposits exist: rock asphalt and sulfur spring asphalt. This study focused on using NA sourced from sulfur springs. The aim was to investigate the potential of incorporating NA into local asphalt mixtures. To achieve this, NA was heated to 163°C for varying durations. After heat treatment, laboratory tests were conducted on NA. The findings suggest that by heating NA for 20 hours, it conforms to Iraqi specifications in terms of physical properties. Furthermore, compared to conventional petroleum asphalt, treated NA showed greater resistance to temperature fluctuations, making it ideal for hotter climates. The study also found that NA enhances mechanical properties significantly. Specifically, the NA mixture recorded the highest indirect tensile strength, with a tensile strength ratio of 81.2%, a slight increase of 0.37% over traditional mixes. In summary, NA mixtures exhibit commendable performance. Given its abundance and affordability in Iraq, after considering heat treatment costs and environmental impact, NA holds promise for the future of asphalt concrete production for the construction of flexible pavement.
Premature failure in asphalt concrete pavement has been the main concern for pavement construction companies and engineers in recent years because of the large rise in traffic volume and loads and the temperature extremes in the summer and winter. The use of modifiers in asphalt concrete mixtures has attracted much attention to increase the performance and lifespan of pavements. As nanotechnology developed, several researchers concentrated on how these materials can help increase pavement serviceability by minimizing rutting and moisture damage. This study evaluates the Hydrated Lime (HL) effect by two methods (wet and dry hydrated lime) on the durability of the warm mix asphalt. The first method, HL, has been supplemented to the as
... Show MoreTwo grades of paving asphalt with penetration of 46 and 65 are studied for determining changes in their physical and chemical properties caused by ageing.
The ageing process has been conducted on two petroleum paving asphalt cement using thin film oven test at 150, 163 and 175 C, and ageing time 5, 10,15, 20, 25 and 30 hours. The effect of ageing time and temperature on penetration, kinematic viscosity, softening point, solubility in trichloroethylene, heat loss and changes in chemical composition are investigated. The results of thin film oven test process indicte that the asphaltenes concentration of all aged asphalt increases with increasing ageing time, while the opposite was observed for polar-aromatic and naphthene-aromatic. The
The global rise in temperature and the desert climatic conditions prevalent in Middle Eastern countries have exacerbated rutting distress in heavily trafficked highways. Conventional asphalt binders with a high-temperature performance grade (PG 70) have proven inadequate under such extreme conditions, necessitating the development of modified binders with enhanced high-temperature performance. While polymer modification using styrene-butadiene-styrene (SBS), an elastomeric polymer, and ethylene-vinyl acetate (EVA), a plastomeric polymer, has been widely studied, limited research provides a direct comparison of their effectiveness at both the binder and mixture levels under extremely high-temperature conditions. This study addresses this gap
... Show MoreA new pavement technology has been developed in Highway engineering: asphalt pavement production is less susceptible to oxidation and the consequent damages. The warm mix asphalt (WMA) is produced at a temperature of about (10-40) oC lower than the hot asphalt paving. This is done using one of the methods of producing a WMA. Although WMA's performance is rather good, according to previous studies, as it is less susceptible to oxidation, it is possible to modify some of its properties using different materials, including polymers. Waste tires of vehicles are one of the types of polymers because of their flexible properties. The production of HMA, WMA, and WMA modified with proportions of (1, 1.5, and 2%) of rub
... Show MoreThis study is a complementary one to an extended series of research work that aims to produce a thermodynamiclly stable asphalt –sulfur blend. Asphalt was physically modified wiht different percentages of asphaltenes , oxidized asphaltenes and then mixed with sulfur as an attempt to obtaine a stable compatible asphalt-sulfur blend. The homogeneneity of asphalt-asphaltenes[oxidized asphaltenes]-sulfur blends were studied microscopically and the results are prsented as photomicrographs. Generally more stable and compatible asphalt-sulfur blends were obtained by this treatment.
The integration of nanomaterials in asphalt modification has emerged as a promising approach to enhance the performance of asphalt pavements, particularly under high-temperature conditions. Nanomaterials, due to their unique properties such as high surface area, exceptional mechanical strength, and thermal stability, offer significant improvements in the rheological properties, durability, and resistance to deformation of asphalt binders. This research reviewed the application of various nanomaterials, including nano silica, nano alumina, nano titanium, nano zinc, and carbon nanotubes in asphalt modification. The incorporation of these nanomaterials into asphalt mixtures has shown potential to increase the stiffness and high-tempera
... Show MoreMoisture induced damage can cause a progressive deterioration in the performance of asphalt pavement by the loss of adhesion between asphalt binder and aggregate surface and/or loss of cohesion within the binder in the presence of water. The objective of this paper is to improve the asphalt mixtures resistance to moisture by using hydrated lime as an anti-stripping additive. For this purpose, two types of asphalt binder were utilized; asphalt grades (40-50) and (60-70) with one type of aggregate of 19.0 mm aggregate nominal maximum size, and limestone dust as a mineral filler. Marshall method was adopted to find the optimum asphalt content. Essentially, two parameters were determined to evaluate the moisture susceptibili
... Show MoreThe filler in the asphalt mixture is essential since it plays a significant role in toughening and stiffening the asphalt. Changes in filler type can lead the asphalt mixtures to perform satisfactorily during their design life or degrade rapidly when traffic and environmental effects are considered. This study aims to assess the impact of filler types such as limestone dust (LS) and hydrated lime (HL) on Marshall characteristics and moisture damage in asphalt mixtures. Three different percentages of HL were employed in this study to partially replace the LS mineral filler: 1.5, 2.0, and 2.5% by aggregate weight. Furthermore, a control mixture was created with 7% LS by overall aggregate weight for the wearing course layer. The Marsha
... Show MoreIn this article it is proved experimentally that the photon is a particle that has mass and constant wavelength by explaining the effect of refractive index on the wavelength and the natural mass of photon. It is very difficult to measure the mass of photon, a simple and easy process was proposed in this paper to calculate the mass length of photon in vacuum (Y) and in medium (Y*), by measuring the length of laser beam in air (Lair) and in medium (Lmed). A new method was postulated to calculate refractive index by using these relations (n = Y*/Y), and (n = Lmed / Lair) which supposed a new theory of light.
This research aims to investigate the effect of four types of nanomaterial on the Marshall properties and durability of warm mix asphalt (WMA). These types are; nano silica(NS), nano carbonate calcium (NCC), nano clay(NC), and nanoplatelets (NP). For each type of Nanomaterial, three contents are tried as following; NS(1%, 3%, and 5%), NCC(2%, 4%, and 6%), NC(3%, 5%, and 7%), and NP (2%, 4%, and 6%) by weight of asphalt cement. Following Marhsall mix design method, the optimum asphalt cement content is determined, thereafter the optimum dosage for each nanomaterial is obtained based on the highest Marshall stability value. The durability of the control mix (no nanomaterial) and modified mixtures have been compared based on moisture damage, r
... Show More