The present work focuses on the experimental implementation of one of the fiber optical sensors, the optical glass fiber built on surface Plasmon resonance. A type of optical glass fiber was used in this work, single-mode no-core fiber with pre-tapering diameter: (125.1 μm) and (125.3 μm), respectively. The taper method can be tested by measuring the output power of the optical fiber before and after chemical etching to show the difference in cladding diameter due to the effect of hydrofluoric acid with increasing time for the taper process. The optical glass fiber sensor can be fabricated using the taper method to reduce the cladding diameter of the fibers to (83.12 µm, 64.37 µm, and 52.45 µm) for single-mode fibers using Hydrofluoric acid to enhance its properties. Next, SPR-based glass fibers were used as a biomedical sensor to sense and determine the refractive index and hemoglobin concentration in blood samples. The response surface plasmon resonance curve of different blood samples was registered in this study showed a decline in the resonance location. The alteration in the refractive index of the sensing medium changed the wavelength of the response surface plasmon resonance curve.
Nanostructural cupric oxide (CuO) films were prepared on Si and glass substrate by pulsed laser deposition technique (PLD) using laser Nd:YAG, using different laser pulses energies from 200 to 600 mJ. The X-ray diffraction pattern (XRD) of the films showed a polycrystalline structure with a monoclinic symmetry and preferred orientation toward (111) plane with nano structure. The crystallite size was increasing with increasing of laser pulse energy. Optical properties was characterized by using UV–vis spectrometer in the wave lengthrange (200-1100) nm at room temperature. The results showed that the transmission spectrum decreases with the laser pulses energy increase. Sensitivity of NO2 gas at different operating temperatures, (50°C,
... Show MoreBackground: Restoration of root canal treated teeth with a permanent restoration affect in the success of endodontically treated teeth. This in vitro study was performed to evaluate and compare the fracture strength of endodontically treated teeth restored by using custom made zirconium posts and cores, prefabricated carbon fiber, glass fiber and zirconium ceramic posts. Materials and method: Forty intact human mandibular second premolars were collected for this study and were divided into five groups. Each group contains 8 specimens: Group1: Teeth restored with Carbon Fiber Posts; Group2: Teeth restored with Glass Fiber Posts; Group3: Teeth restored with Zirconium Ceramic prefabricated Posts; Group4: Teeth restored with Zirconium Posts
... Show MoreBackground : Coronary artery disease is theunderlying cause in approximately two thirds of
patients with systolic heart failure ;
Coronary artery angiogriphy may be useful to
define the presence ,
Anatomical characteristics ,and functional
significance of Coronary artery disease in
selected heart failure patients with or without signs
and aymptoms of Coronary artery disease.
Objectives: to verify the clinical usefulness of
coronary angiography (CA) in congestive heart
failure (CHF) patients with no history of ischemic
heart disease and to identify predictive factors for
performing coronary angiography to patients with
congestive heart failure with no obvious ischemia.
Methods :this is a cross-ses
The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.
Background: Hemoglobin A1c (HbA1c) is a widely used test for glycemic control. It is done for chronic kidney disease (CKD) patients. Renal disease is accompanied by thyroid abnormalities, which affect HbA1c, especially in those taking erythropoiesis-stimulating agents (ESAs). We aimed to find the effect of thyroid dysfunction on HbA1c in hemodialysis patients taking ESAs and those who do not. Materials and Method: Fifty six patients were included in this study, which was done between September 2017 and June 2018, in Baghdad Teaching Hospital. Thyroid stimulating hormone, free T3, free T4 and HbA1c measurements were done. The patients were divided into 2 groups; those who took ESAs and those who did not, then they were subdivided into those
... Show MoreAbstract Background Hemoglobin A1c (HbA1c) is a widely used test for glycemic control. It is done for chronic kidney disease (CKD) patients. Renal disease is accompanied by thyroid abnormalities, which affect HbA1c, especially in those taking erythropoiesis-stimulating agents (ESAs). We aimed to find the effect of thyroid dysfunction on HbA1c in hemodialysis patients taking ESAs and those who do not. Materials and Method Fifty six patients were included in this study, which was done between September 2017 and June 2018, in Baghdad Teaching Hospital. Thyroid stimulating hormone, free T3, free T4 and HbA1c measurements were done. The patients were divided into 2 groups; those who took ESAs and those who did not, then they were subdivided into
... Show MoreEnergy efficiency is a significant aspect in designing robust routing protocols for wireless sensor networks (WSNs). A reliable routing protocol has to be energy efficient and adaptive to the network size. To achieve high energy conservation and data aggregation, there are two major techniques, clusters and chains. In clustering technique, sensor networks are often divided into non-overlapping subsets called clusters. In chain technique, sensor nodes will be connected with the closest two neighbors, starting with the farthest node from the base station till the closest node to the base station. Each technique has its own advantages and disadvantages which motivate some researchers to come up with a hybrid routing algorit
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show More