The present work focuses on the experimental implementation of one of the fiber optical sensors, the optical glass fiber built on surface Plasmon resonance. A type of optical glass fiber was used in this work, single-mode no-core fiber with pre-tapering diameter: (125.1 μm) and (125.3 μm), respectively. The taper method can be tested by measuring the output power of the optical fiber before and after chemical etching to show the difference in cladding diameter due to the effect of hydrofluoric acid with increasing time for the taper process. The optical glass fiber sensor can be fabricated using the taper method to reduce the cladding diameter of the fibers to (83.12 µm, 64.37 µm, and 52.45 µm) for single-mode fibers using Hydrofluoric acid to enhance its properties. Next, SPR-based glass fibers were used as a biomedical sensor to sense and determine the refractive index and hemoglobin concentration in blood samples. The response surface plasmon resonance curve of different blood samples was registered in this study showed a decline in the resonance location. The alteration in the refractive index of the sensing medium changed the wavelength of the response surface plasmon resonance curve.
Dual-species biofilms of Pseudomonas aeruginosa and Staphylococcus aureus generate difficult-to-treat illnesses. Nutrition stress in biofilms affects physiology, microbial metabolism, and species interactions, impacting bacteria growth and survival. Furthermore, the function of alginate, which is encoded by the algD gene, in the production of biofilms has been established. The present study aimed at investigating the impact of starvation on algD gene expression in single-species biofilm of P. aeruginosa and dual-species biofilms of P. aeruginosa and S. aureus from hospital sewage. A total of six P. aeruginosa and six S. aureus isolates were obtained from the microbiology laboratory at the Department of Biology, College of Science, Universit
... Show MoreA Stereomicroscopic Evaluation of Four Endodontic Sealers Penetration into Artificial Lateral Canals Using Gutta-Percha Single Cone Obturation Technique, Omar Jihad Banawi*, Raghad
BACKGROUND: Enteric fever caused by Salmonella Typhi is an endemic disease in Iraq. Variations in presentations make it a diagnostic challenge. If untreated or treated inappropriately then it is a serious disease with potentially life-threatening complications. The recent emergence of drug resistant strains of S. Typhi is a rising public health problem and a clinical concern to the physician. AIM: The objectives of the study were to assess and describe the patterns of antimicrobial resistance, clinical characteristics, epidemiological distribution, and complications of typhoid fever. PATIENTS AND METHODS: Fifty cases of typhoid fever (culture proven) were collected during the period from February 2019 to November 2019 in the me
... Show MoreThis research aims to test the causal relationship long-and short-run between the price of gold the global crude oil price and the exchange rate of the dollar and how you can take advantage of the nature of this relationship, particularly in the Arab oil states that achieve huge surpluses, including Iraq and how to keep on the purchasing power of these surpluses or reduce the levels of risk.
The problem is that the Arab oil countries, adversely affected, as a result of that relationship, due to the fact that its role confined to the sale of crude oil only. They do not have control in the dollar, then they are not able to take advantage of its impact on the price of gold the fact that gold is effective pr
... Show MoreTo achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios
... Show MoreThe effect of fiber volume fraction of the carbon fiber on the thermal conductivity of the polymer composite material was studied. Different percentages of carbon fibers were used (5%, 10%, 15%, 20%, and 25%). Specimens were made in two groups for unsaturated polyester as a matrix and carbon fibers, first group has parallel arrangement of fibers and the second group has perpendicular arrangement of fibers on the thermal flow, Lee's disk method was used for testing the specimens. This study showed that the values of the of thermal conductivity of the specimens when the fibers arranged in parallel direction was higher than that when the fibers arranged in the perpendicular direction
 
... Show MoreThe disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD
... Show MoreTi6Al4V thin film was prepared on glass substrate by RF
sputtering method. The effect of RF power on the optical properties
of the thin films has been investigated using UV-visible
Spectrophotometer. It's found that the absorbance and the extinction
coefficient (k) for deposited thin films increase with increasing
applied power, while another parameters such as dielectric constant
and refractive index decrease with increasing RF power.
ZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show More