Nanofluids (i.e. nanoparticles dispersed in a fluid) have tremendous potential in a broad range of applications, including pharmacy, medicine, water treatment, soil decontamination, or oil recovery and CO2 geo-sequestration. In these applications nanofluid stability plays a key role, and typically robust stability is required. However, the fluids in these applications are saline, and no stability data is available for such salt-containing fluids. We thus measured and quantified nanofluid stability for a wide range of nanofluid formulations, as a function of salinity, nanoparticle content and various additives, and we investigated how this stability can be improved. Zeta sizer and dynamic light scattering (DLS) principles were used to investigate zeta potential and particle size distribution of nanoparticle-surfactant formulations. Also scanning electron microscopy was used to examine the physicochemical aspects of the suspension. We found that the salt drastically reduced nanofluid stability (because of the screening effect on the repulsive forces between the nanoparticles), while addition of anionic surfactant improved stability. Cationic surfactants again deteriorated stability. Mechanisms for the different behaviour of the different formulations were identified and are discussed here. We thus conclude that for achieving maximum nanofluid stability, anionic surfactant should be added.
Legislative language is characterized by its complexity, specifically in the process of translating statutory terms from two quite different languages, and from totally two different legal systems as from Spanish into Arabic. The present study stresses the process of translating legislative terms used in Spanish wills into Arabic through high lightening the polysemy of such mentioned terms and explaining their use in other legislative grounds. Additionally, the present study elucidates, analyzes, underlines the difficulty and looks for the most appropriate procedures and techniques of translating some of the prominent inheritance expressions taking in account the legislative dif
... Show MoreThis study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal meas
... Show MoreThe present study was conducted to determine the optimum conditions required for lipase enzyme activity extracted from germinated sunflower seeds, including temperature, pH, agitation, time of incubation, enzyme concentration, substrate type, and concentrations of mineral salts and EDTA. Optimum pH, temperature and time of incubation required for lipase stability were also determined. The results showede optimum lipase activity (3.251U/ml) wasund at 30 ÌŠC and pH 7 after 20 minutes of incubation when using 1 ml lipase enzyme with 0.02 ml of CaCl2 (10 mM) at 100 rpm of agitation and in the presence of olive oil as the substrate for enzyme reaction. EDTA appeared to have inhibitory effects, while Ca+2 and Mg+2 have stimulatory effec
... Show MoreIn the present paper, an eco-epidemiological model consisting of diseased prey consumed by a predator with fear cost, and hunting cooperation property is formulated and studied. It is assumed that the predator doesn’t distinguish between the healthy prey and sick prey and hence it consumed both. The solution’s properties such as existence, uniqueness, positivity, and bounded are discussed. The existence and stability conditions of all possible equilibrium points are studied. The persistence requirements of the proposed system are established. The bifurcation analysis near the non-hyperbolic equilibrium points is investigated. Numerically, some simulations are carried out to validate the main findings and obtain the critical values of th
... Show MoreOilwell cementing operations are crucial for drilling and completion, preserving the well's productive life. However, weak and permeable formations pose a high risk of cement slurry loss, leading to failure. Lightweight cement, like foamed cement, is used to avoid these difficulties. This study is focused on creating a range of foamed slurry densities and examining the effect of gas concentration on their rheological properties. The foaming agent and foam stabilizer are tested, and the optimal concentration is determined to be 2% and 0.12%, respectively, by the weight of the cement.
Furthermore, the construction of samples of foam cement with different densities (0.8, 1.0, 1.2, 1.4, and 1.6) g/cc is performed to f
... Show MoreThis paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
In this study, a cholera model with asymptomatic carriers was examined. A Holling type-II functional response function was used to describe disease transmission. For analyzing the dynamical behavior of cholera disease, a fractional-order model was developed. First, the positivity and boundedness of the system's solutions were established. The local stability of the equilibrium points was also analyzed. Second, a Lyapunov function was used to construct the global asymptotic stability of the system for both endemic and disease-free equilibrium points. Finally, numerical simulations and sensitivity analysis were carried out using matlab software to demonstrate the accuracy and validate the obtained results.
Dyspepsia is a significant public health issue that affects the entire world population. In this work, we formulate and analyze a deterministic model for the population dynamics of Gut bacteria in the presence of antibiotics and Probiotic supplements. All the possible equilibria and their local stability are obtained. The global stability around the positive equilibrium point is established. Numerical simulations back up our analytical findings and show the temporal dynamics of gut microorganisms.
Earth dams in regions with moderate to high seismic activity are crucial for protecting downstream communities. Iraq and its neighboring areas have seen recurrent seismic activity, notably the 2017 Halabja Earthquake, which potentially compromised the integrity of the existing earth dam. The Darbandikhan Dam, affected by an earthquake, has inadequacies in its crest and downstream slope, presenting a greater danger of significant earthquake-induced damage compared to cyclic shocks. Consequently, evaluating the dam's safety is essential for safeguarding downstream residents and identifying optimal ways to avert slope stability failure amid recurrent seismic activity. Iraq's seismicity map is being updated to reflect earthquake magni
... Show MoreNanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alte
... Show More