In this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of 2.5[Formula: see text]min/L to prepare the platinum nanoparticles, and spectroscopic study of plasma parameter including, electron temperature, electron density, Debye length and plasma frequency, were computed using spectral analysis techniques. The effect of nanoparticles on natural lymphocytes was studied to calculate cytotoxicity and the greatest proportion was at the concentration of 100% nanoparticle platinum is 37.4%. The study results revealed that cold in the atmosphere is a promising technology when used in the production of nanoparticle materials which can be used for many industrial and medical applications.
We manufactured the nanoparticles light emitting diode (NPs-LED) for organic and inorganic semiconductors to achieve electroluminescence (EL). The nanoparticles of Europium oxide(Eu2O3) were incorporated into the thin film layers of the organic compounds, poly(3,4,- ethylene dioxythiophene)/polystyrene sulfonic acid (PEDOT:PSS), N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’- diamine (poly TPD) and polymethyl methacrylate (PMMA), by the spin coating and with the help of the phase segregation method. The EL of NPs-LED, was study for the different bias voltages (20, 25, 30) V at the room temperature, from depending on the CIE 1931 color spaces and it was generated the white light at 20V, t
... Show MoreTitanium dioxide nanotubes were synthesized by anodizing Ti sheets in the ethylene glycol solution and were covered in Pt nanoparticles onto the surface of TiO2NTs using electrodeposition method from using five derivatives of Mannich base Pt complexes which have been used as precursor of platinum. The mean size, shape, elemental composition of the titanium dioxide nanotubes and platinum deposited on the template were evaluated by different techniques such as field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction pattern (XRD), and energy dispersive X-ray (EDX) technique. From all these analyses, the TiO2NTs prepared and Ptnanoparticles deposited on it were ide
... Show MoreThe protozoan parasite Entamoeba histolytica is a causative agent of amoebiasis, where it causes millions of cases of dysentery and liver abscess each year. Metronidazole is a drug of choice against amoebiasis. The drug is a choice because of its efficacy and low cost, but at the same time it causes several adverse side effects; therefore, it is important to find effective medications to treat amoebiasis without any complications or any side effects. The aim of this study is to evaluate the effectiveness of different concentrations (50, 75 and 100 µg/ml) of silver nanoparticle (AgNPs) against trophozoites stages of E. histolytica in vitro. The results showed a significant decrease (p ? 0.05) in numbers of trophozoites stages after treated
... Show MoreThe sensors based on Nickel oxide doped chromic oxide (NiO: Cr2O3) nanoparticals were fabricated using thick-film screen printing of sol-gel grown powders. The structural, morphological investigations were carried out using XRD, AFM, and FESEM. Furthermore, the gas responsivity were evaluated towards the NH3 and NO2 gas. The NiO0.10: Cr2O3 nanoparticles exhibited excellent response of 95 % at 100oC and better selectivity towards NH3 with low response and recovery time as compared to pure Cr2O3 and can stand as reliable sensor element for NH3 sensor related applications.
The present study investigates the characterization of silver nanoparticles (AgNPs) synthesized using Fusarium solani and their impact on tomato seed germination, plant growth, and disease resistance. A visible color change from yellow to dark smoky indicated the formation of AgNPs, while UV-visible spectrophotometry revealed an absorbance peak at 437 nm, confirming their presence. Atomic force microscopy analysis showed that the AgNPs ranged from 0 to 39.27 nm in size, with an average height of 5.772 nm, while scanning electron microscopy highlighted their diverse surface morphology. The application of AgNPs and mycorrhizal fungi significantly improved tomato seed germination rates, plant height, and dry weight compared to untreate
... Show MoreThe nonlinear optical properties response of nematic liquid crystal (6CHBT) and the impact of doping with two kinds of nanoparticles; Fe3O4 magnetic nanoparticles and SbSI ferroelectric nanoparticles have been studied using the non-linear dynamic method through z-scan measurement technique. This was achieved utilizing CW He-Ne laser. The pure LC and magnetic LC nanoparticle composite samples had a maximum absorption while the ferroelectric LC nanoparticle composite had a minimum absorption of the incident light. The nonlinear refractive index was positive for the pure LC and the rod-like ferronematic LC composite samples, while it was negative for the ferroelectric LC composite. The studying of the nonlinear optical
... Show MoreBackground: Colonization of soft denture liners by Candida albicans and other microorganisms continued to be a serious problem. The aim of this study was to evaluate the effect of incorporating silver nanoparticles into heat cured acrylic-based soft denture liner on the antifungal activity, and on water sorption, solubility, shear bond strength and color change of the soft lining material. Furthermore, evaluating the amount of silver released. Materials and methods: Silver nanoparticles were incorporated into soft denture liner in different percentages (0.05%, 0.1% and 0.2% by weight). Four hundred and twenty specimens were prepared and divided into five groups according to the test to be performed. The antifungal activity of the soft liner
... Show More