In this study, NaOH dissolution method was applied to dissolve cellulose fibers which extracted from date palm fronds (type Al-Zahdi) taken from Iraqi gardens. In this process, (NaOH)-solution is brought into contact with the cellulose fibers at low temperature. Experiments were conducted with different concentrations of NaOH (4%, 6%, 8% and12%) weight percent at two cooling bath temperatures (-15 oC) and (-20oC). Maximum cellulose dissolution was 23 wt% which obtained at 8 wt% concentration of NaOH and at cooling bath temperature of -20oC. In order to enhance the cellulose fibers dissolution, the sample was pretreated with Fenton's reagent which consists of hydrogen peroxide (H2O2), oxalic acid (C2H2O4) and ferrous sulfate (FeSO4). This reagent reacts with cellulose fibers and produces free radicals which increase cellulose dissolution. In this work three variables were studied: cooling bath temperature (-15oCand-20oC), NaOH concentration (4%, 6%, 8% and12%) and time of Fenton's reagent treatment (1-48) hrs. The results showed that the best percent of cellulose dissolution was (42 wt %) which occurred at treatment time (24 hours), temperature (-20oC) and NaOH concentration 8%. In another set of experiments urea was added to NaOH solution as a catalyst with proportion (6%NaOH+4% urea) at two temperatures -15 and -20 oC. The results show that the solubility of cellulose increase to 62% for the sample which treated with Fenton's reagent and to 35% for the untreated sample, both values were obtained at -15oC.
A particular solution of the two and three dimensional unsteady state thermal or mass diffusion equation is obtained by introducing a combination of variables of the form,
η = (x+y) / √ct , and η = (x+y+z) / √ct, for two and three dimensional equations
respectively. And the corresponding solutions are,
θ (t,x,y) = θ0 erfc (x+y)/√8ct and θ( t,x,y,z) =θ0 erfc (x+y+z/√12ct)
The development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show MoreKE Sharquie, AA Noaimi, SD Hameed, Journal of Cosmetics, Dermatological Sciences and Applications, 2013 - Cited by 15
This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.
Molar conductivity of different concentrations of thymine and adenosine in water , sodium acetate and ammonium chloride solution at different temperatures , 283. 15-323.15 K has been determined from direct conductivity measurements , examination of aqueous mixture of thymine and adenosine with Onsager equation reveal deviation from linearity at high concentration .This deviation was explained in term of molecular interaction . Ostwald dilution law also examined with the above mixtures lead to calculation of limiting molar conductivities and dissociation constants of both nucleic acid in water , sodium acetate and ammonium chloride. The agreement between the values obtained for Onsager equa
... Show MoreVolterra – Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained
... Show MoreThe aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.
This research includes a study of the ability of Iraqi porcelanite rocks powder to remove the basic Safranine dye from its aqueous process by adsorption. The experiments were carried out at 298Kelvin in order to determine the effect of the starting concentration for Safranin dye, mixing time, pH, and the effect of ionic Strength. The good conditions were perfect for safranine dye adsorption was performed when0.0200g from that adsorbed particles and the removal max percentage was found be 96.86% at 9 mg/L , 20 minutes adsorption time and at PH=8 and in 298 K. The isothermal equilibrum stoichiometric adsorption confirmed, the process data were examined by Langmuir, Freundlich and Temkin adsorption equations at different temperatures
... Show More