Objective Using two complementary techniques of virus detection human papillomavirus (HPV)[capture of hybrids (CH) and polymerase chain reaction (PCR)], relate the cytological study and/or cervical biopsy with high-risk HPV (HPV-HR) genotypes presence, as well as relating their viral load (VL). Methods About 272 women, who presented most cell alterations compatible with lesions cervical HPV, which has been detected in all high risk by the CH method and HPV genotype detection by PCR. Results In 22% of the patients it was not detected HPV DNA. Genotype 16 and/or 18 was prevalent and was found in 33% of the 212 women studied, meanwhile, mixed infections were found by several genotypes in 25%. In as for the histological lesions found, in 61 patients with squamous intraepithelial lesions of high grade (H-SIL) and cancer, 55.73% presented genotypes 16 and/or 18, while in 38 patients with presence of altered squamous cells of significance uncertain (ASCUS) and 126 with squamous lesions low-grade intraepithelial (L-SIL), were put on manifest these genotypes only in 7.9% and 22.2%, respectively (p< 0.05). About 12.13% of the 272 patients had a VL< 3 pg/ml. In those with an HPV VL> 3 pg/ml, were HPV-AR found in 77.40% of these (p< 0.05). Conclusions In patients with H-SIL biopsy revealed genotypes 16 and/or 18. The CH2 technique is useful as a screening procedure, while PCR is interesting to identify HPV-HR genotypes
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreSpraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...
Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreDigital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb