In this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the methods of the robust circular S method in the case that the data does not contain outlier values because it was recorded the lowest mean criterion, mean squares error (Median MSE), the least median standard error (Median SE) and the largest value of the criterion of the mean cosines of the circular residuals A(K) for all proposed sample sizes (n=20, 50, 100). In the case of the contaminant in the vertical data, it was found that the circular least squares method is not preferred at all contaminant rates and for all sample sizes, and the higher the percentage of contamination in the vertical data, the greater the preference of the validity of estimation methods, where the mean criterion of median squares of error (Median MSE) and criterion of median standard error (Median SE) decrease and the value of the mean criterion of the mean cosines of the circular residuals A(K) increases for all proposed sample sizes. In the case of the contaminant at high lifting points, the circular least squares method is not preferred by a large percentage at all levels of contaminant and for all sample sizes, and the higher the percentage of the contaminant at the lifting points, the greater the preference of the validity estimation methods, so that the mean criterion of mean squares of error (Median MSE) and criterion of median standard error (Median SE) decrease, and the value of the mean criterion increases for the mean cosines of the circular residuals A(K) and for all sample sizes.
In this paper we use the Markov Switching model to investigate the link between the level of Iraqi inflation and its uncertainty; forth period 1980-2010 we measure inflation uncertainty as the variance of unanticipated inflation. The results ensure there are a negative effect of inflation level on inflation uncertainty and all so there are a positive effect of inflation uncertainty on inflation level.  
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreA genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa
Object tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this
... Show MoreIntroduction: Although soap industry is known from hundreds of years, the development accompanied with this industry was little. The development implied the mechanical equipment and the additive materials necessary to produce soap with the best specifications of shape, physical and chemical properties. Objectives: This research studies the use of vacuum reactive distillation VRD technique for soap production. Methods: Olein and Palmitin in the ratio of 3 to 1 were mixed in a flask with NaOH solution in stoichiometric amount under different vacuum pressures from -0.35 to -0.5 bar. Total conversion was reached by using the VRD technique. The soap produced by the VRD method was compared with soap prepared by the reaction - only method which
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreThe rise in the general level of prices in Iraq makes the local commodity less able to compete with other commodities, which leads to an increase in the amount of imports and a decrease in the amount of exports, since it raises demand for foreign currencies while decreasing demand for the local currency, which leads to a decrease in the exchange rate of the local currency in exchange for an increase in the exchange rate of currencies. This is one of the most important factors affecting the determination of the exchange rate and its fluctuations. This research deals with the currency of the European Euro and its impact against the Iraqi dinar. To make an accurate prediction for any process, modern methods can be used through which
... Show More