BACKGROUND: Three-dimensional (3D) printing is an evolving technology that has been used recently in a wide spectrum of applications. AIM: The objective is to evaluate the application of 3D printing in various neurosurgical practice. PATIENTS AND METHODS: This pilot study was conducted in the neurosurgical hospital in Baghdad/Iraq between July 2018 and July 2019. An X, Y, and Z printer was used. The working team included neurosurgeons, biomedical engineers, and bio-technicians. The procedure starts with obtaining Magnetic resonance imaging (MRI) or computed tomography (CT) scan in particular protocols. The MRI, and CT or angiography images were imported into a 3D programmer for DICOM images called 3D slice where these files converted into a 3D pictures. Next, the neurosurgeon determines the cut section he needs to print. The final required object is exported to the X, Y, Z printing software where the technician starts to print it out. The final prototype delivered to the neurosurgeon. He uses it intraoperatively to have an apparent actual size 3D representation of the actual lesion with nearby healthy tissues to have a good idea about the case they manages. RESULTS: This pilot study was applied in three major projects: brain tumors (ten cases), cerebral aneurysms (nine cases), and spine surgery (14 cases). CONCLUSION: Three-dimensional printing has excellent advantages in neurosurgical practice. It can replace many other recent modalities. It enables the neurosurgeon works with more precision, less time-consuming, less cost, and less radiation exposure.
The research aims to identify the positives formulation entrances authors depending on the setting retaining the names of the authors of Arab veterans and cons of setting the entrances to Arab authors ancient depending on the nickname by desktop diligence without reference to a setting retaining the potential to benefit other libraries disciple of retaining existing in sober university libraries. Use the survey method and adopted a questionnaire distributed to the research sample consisting of employees working in the libraries in question and the total number of forms that have been distributed (50) form .tousel search phrase conclusions from them .
1-The lack of authority control depends on it to find a
... Show MoreThe study aims at diagnosing the importance of environmental analysis (external, industrial and internal) in the organization's strategy for the development of public organizations. The theoretical problem derived from the existence of a knowledge gap for studies and research that dealt with the variables of the study. Three public organizations were selected as the study society (the Civil Defense Directorate, the Directorate of Nationality, Passports and Residency, the General Traffic Directorate). The sample of the study was a sample of (215) managers (managers, department managers, Analysis of the data and hypothesis testing using the appropriate statistical tools, Pearson, the simple and multiple regression coefficient to te
... Show MoreIn this work, composite materials were prepared by mixing different concentrations of ferrites with polyacrylonitrile (PAN) polymer. Using the electrospinning technique, these composites were deposited on a p-type silicon wafer. The prepared samples demonstrated nanofibers in both pure PAN polymers and their composites with ferrite. Prior to examining the humidity sensing effectiveness with a percentage of relative humidity at a frequency of 10 kHz, based on ambient temperature and a relative humidity range of 50–100%, the composite nanofibers demonstrated stronger humidity sensing compared to the pure PAN nanofibers, which demonstrated a powerful resistance response. More precisely, the PAN@ferrite nanocomposite showed a broad adsorption
... Show MoreContents IJPAM: Volume 116, No. 3 (2017)
PMMA (Poly methyl methacrylate) is considered one of the most commonly used materials in denture base fabrication due to its ideal properties. Although, a major problem with this resin is the frequent fractures due to heavy chewing forces which lead to early crack and fracture in clinical use. The addition of nanoparticles as filler performed in this study to enhance its selected mechanical properties. The Nano-additive effect investigated in normal circumstances and under a different temperature during water exposure. First, tests applied on the prepared samples at room temperature and then after exposure to water bath at (20, 40, 60) C° respectively. SEM, PSD, EDX were utilized for samples evaluation in this study. Flexural
... Show MoreIn this paper, two elements of the multi-input multi-output (MIMO) antenna had been used to study the five (3.1-3.55GHz and 3.7-4.2GHz), (3.4-4.7 GHz), (3.4-3.8GHz) and (3.6-4.2GHz) 5G bands of smartphone applications that is to be introduced to the respective US, Korea, (Europe and China) and Japan markets. With a proposed dimension of 26 × 46 × 0.8 mm3, the medium-structured and small-sized MIMO antenna was not only found to have demonstrated a high degree of isolation and efficiency, it had also exhibited a lower level of envelope correlation coefficient and return loss, which are well-suited for the 5G bands application. From the fabrication of an inexpensive FR4 substrate with a 0.8 mm thickness level, a loss tang
... Show MoreIn this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
In this work, silicon nitride (Si3N4) thin films were deposited on metallic substrates (aluminium and titanium sheets) by the DC reactive sputtering technique using two different silicon targets (n-type and p-type Si wafers) as well as two Ar:N2 gas mixing ratios (50:50 and 70:30). The electrical conductivity of the metallic (aluminium and titanium) substrates was measured before and after the deposition of silicon nitride thin films on both surfaces of the substrates. The results obtained from this work showed that the deposited films, in general, reduced the electrical conductivity of the substrates, and the thin films prepared from n-type silicon targets using a 50:50 mixing ratio and deposited on both
... Show More