Objective: The approximate life span of a silicone maxillofacial prosthesis is as short as1.5–2 years of clinical service, then a new prosthesis should be fabricated. The most common reasonfor re-making the prosthesis is silicone mechanical properties degradation. The aim of this studywas to assess some mechanical properties of VST-30 silicone for maxillofacial prostheses after addi-tion of intrinsic pigments.Methods: Two types of intrinsic pigments (rayon flocking and burnt sienna); each of them wasincorporated into silicone. One hundred and twenty samples were prepared and split into 4 groupsaccording to the conducted tests (tear strength, hardness, surface roughness, and tensile strengthand elongation percentage) with 30 samples for each test. Each group was equally split into threesubgroups. Group (A) was without pigment (control group), group (B) was with rayon flockingand group (C) was with burnt sienna.Results: Samples with rayon flocking showed a highly significant decrease in hardness and therewas a significant increase in tear strength, while there were non-significant differences in surfaceroughness, tensile strength and elongation percentage. Samples with burnt sienna showed a highlysignificant increase in tear strength and a highly significant decrease in hardness, but surface rough-ness, tensile strength and elongation percentage showed non-significant differences. However, therewere non-significant differences between experimental groups in all tests.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreIn this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreBackground: The mechanical and physical properties of Polymethyl methacrylate (PMMA) don’tfulfill the entire ideal requirements of denture base materials. The purpose of this study was to produce new modified polymer nanocomposite (PMMA /ZrO2-TiO2) andassess itsimpact strength, transverse strength and thermal conductivity in comparison to the conventionalheat polymerized acrylic resin. Materials and Methods: Both ZrO2 and TiO2nano fillers were silanized with TMSPM (trimethoxysilyl propyl methacrylate) silane coupling agent before beingdispersed by ultrasonication with the methylmethacrylate (monomer) and mixed with the polymer by means of 2% by weight in (1:1) ratio, 60 specimens were constructed by conventional water bath processing
... Show MoreAbstract
This study investigates the mechanical compression properties of tin-lead and lead-free alloy spherical balls, using more than 500 samples to identify statistical variability in the properties in each alloy. Isothermal aging was done to study and compare the aging effect on the microstructure and properties.
The results showed significant elastic and plastic anisotropy of tin phase in lead-free tin based solder and that was compared with simulation using a Crystal Plasticity Finite Element (CPEF) method that has the anisotropy of Sn installed. The results and experiments were in good agreement, indicating the range of values expected with anisotropic properties.
Keywords<
... Show MoreCzerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show More