Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is needed, one that can represent the key aspects of soil behavior using simple parameters. In this regard, the powerful hypoplasticity model is suggested in this paper. It is classified as a non-linear model in which the stress increment is stated in a tonsorial form as a function of strain increment, actual stress, and void ratio. Eight material characteristics are needed for the hypoplastic model. The hypoplastic model has a unique way to keep the state variables and material parameters separated. Because of this property, the model can implement the behavior of soil under a variety of stresses and densities while using the same set of material properties.
This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreFace recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show MoreThe health of Roadway pavement surface is considered as one of the major issues for safe driving. Pavement surface condition is usually referred to micro and macro textures which enhances the friction between the pavement surface and vehicular tires, while it provides a proper drainage for heavy rainfall water. Measurement of the surface texture is not yet standardized, and many different techniques are implemented by various road agencies around the world based on the availability of equipment’s, skilled technicians’ and funds. An attempt has been made in this investigation to model the surface macro texture measured from sand patch method (SPM), and the surface micro texture measured from out flow time (OFT) and British pendul
... Show MoreFlexible molecular docking is a computational method of structure-based drug design to evaluate binding interactions between receptor and ligand and identify the ligand conformation within the receptor pocket. Currently, various molecular docking programs are extensively applied; therefore, realizing accuracy and performance of the various docking programs could have a significant value. In this comparative study, the performance and accuracy of three widely used non-commercial docking software (AutoDock Vina, 1-Click Docking, and UCSF DOCK) was evaluated through investigations of the predicted binding affinity and binding conformation of the same set of small molecules (HIV-1 protease inhibitors) and a protein target HIV-1 protease enzy
... Show MoreThis research focuses on studying the effects of soil movement on the behavior of an existing pile driven in sandy soil. A physical model has been manufactured to investigate the effect of construction of an embankment adjacent to free head single pile driven in sand of dry unit weight of 13.5 kN/m3. The model pile of diameter (D) of 10 mm are tested under two conditions of loading: loaded axially and without load. The model piles are instrumented with strain gauges along the embedded length to measure strains resulting from the soil movement. The embankment loads are applied at distances of 2.5, 5, and 10D from the edge of the pile. The results obtained from the
Granular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp
... Show More