Preferred Language
Articles
/
SRf_Wo4BVTCNdQwC0kQE
Hierarchical learning and its effect on learning some basic skills in fencing for third stage students.
...Show More Authors

MH Hamzah, AF Abbas, International Journal of Early Childhood Special Education, 2022

View Publication
Publication Date
Thu Jan 15 2026
Journal Name
Biomed Visions Journal
Developing Pharmacy Education: Review of Virtual Reality Technology in Improving Clinical Training and Learning Skill Development
...Show More Authors

Incorporating modern technology into education is becoming imperative. Numerous pharmacy institutions are incorporating virtual reality (VR) technology training into their curricula to enhance educational experience. This review examines the current state, historical evolution, and application of VR programs in pharmacy education and training. The review also provides details about the main challenges and limitations associated with the use of this technology. The VR technology, including virtual laboratories and simulations, significantly improves clinical training and educational outcomes. The utilization of VR in clinical teaching encounters numerous barriers, including ethical concerns and technological constraints, as well as other res

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
Analysing errors in learning the preasent continuous tense:Associating interference with strategy of instruction
...Show More Authors

0

View Publication Preview PDF
Publication Date
Thu Mar 02 2023
Journal Name
Applied Sciences
Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review
...Show More Authors

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach

... Show More
View Publication Preview PDF
Scopus (136)
Crossref (126)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Educational And Psychological Researches
The effect of (SWOM) strategy on acquiring the psychological concepts of educational psychology course and its retention among education college students
...Show More Authors

The current study aims to investigate the effect of (SWOM) strategy on acquiring the psychological concepts of educational psychology course and its retention among education college students. To do this, a sample of (57) male and female student were intentionally selected from first grade, Kurdish department / college of education / Ibin Rushd of human sciences. The sample distributed on two classes, whereby the experimental group consisted of (28) student were taught according to the (SWOM) strategy while the control group made up of (29) student were taught based on the tradition method. The two researchers designed a scale included (50) item to measure students' achievement. The experiment lasted for ten weeks, SPSS was used

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 01 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
Prothrombotic changes in patients with end-stage renal disease and its relation to thrombotic cardiovascular complication
...Show More Authors

There is a great risk of cardiovascular disease (CVD) and vascular thrombosis in patients with End-Stage Renal Disease (ESRD). These patients exhibit numerous abnormalities in coagulation, fibrinolytic, inhibitory protein abnormalities in multiple levels. The study aimed to assess hypercoagulable changes by measuring the levels of antithrombin, plasma fibrinogen and FXII activity in patients with ESRD, and to find their correlation with Hemoglobin (Hb) level, WBC count, reticulocyte percentage and platelet count. This study was conducted at Al-Hayat center, Al Karama Teaching Hospital on 50 ESRD patients aged < 60 years of both genders. In addition, 20 apparently healthy individuals were included as a control group. The mean Hb level, total

... Show More
Scopus
Publication Date
Sun Feb 15 2026
Journal Name
Karbala Journal Of Physical Education Sciences
Training of different ranges using the (HC-SR04 ultrasonic sensor ) and its effect in developing some of special abilities for young boxers
...Show More Authors

View Publication
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (22)
Crossref (12)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of select

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref