The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approaches to identify DDoS attacks in SDN networks between 2018 and the beginning of November 2022. To search the contemporary literature, we have extensively utilized a number of digital libraries (including IEEE, ACM, Springer, and other digital libraries) and one academic search engine (Google Scholar). We have analyzed the relevant studies and categorized the results of the SLR into five areas: (i) The different types of DDoS attack detection in ML/DL approaches; (ii) the methodologies, strengths, and weaknesses of existing ML/DL approaches for DDoS attacks detection; (iii) benchmarked datasets and classes of attacks in datasets used in the existing literature; (iv) the preprocessing strategies, hyperparameter values, experimental setups, and performance metrics used in the existing literature; and (v) current research gaps and promising future directions.
This article comprehensively examines the history, diagnosis, genetics, diversity, and treatment of SARS-CoV-2. It details the emergence of coronaviruses over the past 50 years, including the coronavirus from 2019 and its subsequent mutations, along with updated information about this virus. This review explains the development and nomenclature of coronaviruses, their cellular invasion through glycoprotein spikes binding to ACE-2 receptors, and the mechanism of cell entry via endocytosis. Diagnosis methods for COVID-19, including nucleic acid amplification, serology, and imaging techniques like chest X-ray and CT scan tests, are discussed. Treatment approaches for COVID-19 are outlined, emphasizing healthcare, antiviral medications like Rem
... Show MoreLaser scanning has become a popular technique for the acquisition of digital models in the field of cultural heritage conservation and restoration nowadays. Many archaeological sites were lost, damaged, or faded, rather than being passed on to future generations due to many natural or human risks. It is still a challenge to accurately produce the digital and physical model of the missing regions or parts of our cultural heritage objects and restore damaged artefacts. The typical manual restoration can become a tedious and error-prone process; also can cause secondary damage to the relics. Therefore, in this paper, the automatic digital application process of 3D laser modelling of arte
Background: Tumor necrosis factor-alpha (TNF-α) and interleukins play important roles in the pathogenesis of rheumatoid arthritis (RA). Genetic research has been employed to find many of the missing connections between genetic risk variations and causal genetic components. Objective: The goal of this study is to look at the genetic variations of TNF-α and interleukins in Iraqi RA patients and see how they relate to disease severity or response to biological therapy. Method: Using specific keywords, the authors conducted a systematic and comprehensive search to identify relevant Iraqi studies examining the genetic variations of TNF-α and interleukins in Iraqi RA patients and how they relate to disease severity or response to biolo
... Show MoreThis research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical
... Show MoreSickle cell disease (SCD) is a hereditary ailment that can cause severe pain and suffering to people who are affected. However, with continued investment in research and treatment options, we can make progress towards improving the lives of those with SCD. Over 40% of patients experience painful vaso-occlusive crises (VOCs), so we must work towards finding solutions and providing support for those living with this condition, These episodes, a hallmark of SCD, significantly contribute to morbidity, mortality, and a diminished quality of life, while also incurring substantial healthcare costs. Chronic pain particularly affects older adolescents and adults with SCD, with over half reporting daily discomfort. Opioid-based analgesics, though sti
... Show Moreملخص البحث
تبحث الدراسھ عن تنفیذ افضل لمفھوم التعلم مدى الحیاة كھیكل موجھ للسیاسة التربویة في العراق بشكل عام وفي
التعلیم العالي بشكل خاص. تحدد الدراسة استراتجیات التعلم مدى الحیاة وتناقش اھمیتھ وسماتھ الرئیسیة لتسھیل
الوصول الى فرص تعلم متمیز و ملائم لحاجات الطلبة مدى الحیاة، كما تناقش دور الجامعة في تحقیق ھذا الھدف.
Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show More