The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approaches to identify DDoS attacks in SDN networks between 2018 and the beginning of November 2022. To search the contemporary literature, we have extensively utilized a number of digital libraries (including IEEE, ACM, Springer, and other digital libraries) and one academic search engine (Google Scholar). We have analyzed the relevant studies and categorized the results of the SLR into five areas: (i) The different types of DDoS attack detection in ML/DL approaches; (ii) the methodologies, strengths, and weaknesses of existing ML/DL approaches for DDoS attacks detection; (iii) benchmarked datasets and classes of attacks in datasets used in the existing literature; (iv) the preprocessing strategies, hyperparameter values, experimental setups, and performance metrics used in the existing literature; and (v) current research gaps and promising future directions.
Background: For patients with coronavirus disease(COVID-19), continuous positive airway pressure (CPAP) has been considered as a useful treatment. The goal of CPAP therapy is to enhance oxygenation, relieve breathing muscle strain, and maybe avoid intubation. If applied in a medical ward with a multidisciplinary approach, CPAP has the potential to reduce the burden on intensive care units. Methods: Cross-sectional design was conducted in the ALSHEFAA center for crises in Baghdad. Questionnaire filled by 80 nurses who work in Respiratory Isolation Unit who had chosen by non-probability (purposive) selection collected the data. Then the researcher used an observational checklist to evaluate nurses’ practice. The data was analyzed us
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreIn this paper, a dynamic investigation is done for strip, rectangular and square machine foundation at the top surface of two-layer dry sand with various states (i.e., loose on medium sand and dense on medium sand). The dynamic investigation is performed numerically using finite element programming, PLAXIS 3D. The soil is expected as a versatile totally plastic material that complies with the Mohr-Coulomb yield criterion. A harmonic load is applied at the base with an amplitude of 6 kPa at a frequency of (2 and 6) Hz, and seismic is applied with acceleration – time input of earthquake hit Halabjah city north of Iraq. A parametric study is done to evaluate the influence of changing L/B ratio (Length=12,6,3 m and width=3 m), type of sand
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured. The manufactured physical model could be used to simulate steady state harmonic load at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into considerations include loading frequency, size of footing and different soil conditions. The footing parameters were related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used (100 200 12.5 mm) and (200 400 5.0 mm).
... Show MoreUrban expansion and its environmental and safety effects are one of the critical information needed for future development planning, safety considerations and environmental management. This work used two methods to monitor urban expansion and it's environmental and safety effects, the first is based on Google Maps for the years 2002 and 2010, and the second was the usage of spatial videos for the year 2013. Although the usage of satellite images is critical to know and investigate the general situation and the total effects of the expansion on a large piece of area, but the Spatial videos do a very detailed fine scale investigation, site conditions regarding both environmental and safety cannot be easily distinguished fr
... Show MoreThis current research deals with the "The role of organizational change in the achievement of strategic success" Who are getting increased attention to being one of the important topics and relatively new, And which have a significant impact on the future of the organization So there is a need for this research, which aims to identify the role of organizational change across dimensions (technology, organizational structure, human resources, organizational culture) in the strategic success through its components (a specific strategy, effective implementation, innovation, customer satisfaction)، And that by two main hypotheses, branched about eight hypothes
... Show MoreAchieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain kno