The artificial silk (Rayon) was produced from the fronds of date palms which was taken from date palm trees (type Al-Zahdi) from the Iraqi gardens. Two main parts of the frond, namely leaves and stalks were used in this study to produce rayon. The palm fronds were converted into a powder of 90-180 micrometers. Major steps were used to produce rayon; delignification, bleaching and finally dissolution. Modified organosolv method which uses organic solvent method was applied to remove high lignin content. Three variables were studied in the delignification process: temperature, the ratio of ethanol to water and digestion time. The results showed that the best percent of lignin removal was (97%) which occured at; digestion time (80 minutes), temperature (185oC) and the ratio of ethanol: water of 50: 50 wt/wt. Statistical experimental design type Central Composite Design (CCD) has been used to find a mathematical relationship between the variables and the remaining lignin percent as a dependent variable. The effect of using different catalysts in delignification process have been studied and found that the best catalyst is sodium hydroxide at the concentration (0.025) mole/L which gave the same percent removal of lignin (97%) but with low digestion time about 30 min. In the next step, the cellulose was dissolved using. NaOH with different concentrations (4%-12%) and the results showed that the optimum concentration of sodium hydroxide was 8% at temperature - 20oC. In order to improve cellulose dissolution, urea was added with proportion (6% NaOH + 4% urea). Finally, the cellulose was spinning with 10% H2SO4 to prepare rayon.
Synthesis of a new class of Schiff-base ligand with a tetrazole moiety to form polymeric metal complexes with CoII, NiII, ZnII, and CdII ions has been demonstrated. The ligand was synthesised by a multi-steps by treating 5-amino-2-chlorobenzonitrile and cyclohexane -1,3-dione, the 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) was obtained. The precursor (M) was prepared from the reaction 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) with NaN3 to obtained (1E,3E)-N1,N3-bis(4-chloro-3-(1H-tetrazol-5-yl)phenyl)cyclohexane-1,3-diimine (N). By reacting the precursor (M) with CS2
... Show MoreCo+2, Ni+2, Cu+2 as well Zn+2 compounds mixed ligand from 8-hydroxyquinoline(8-HQ) also tributylphosphine (PBu3) have been attended at aquatic ethyl alcohol for (1:2:2) (M:8-HQ:PBu3). Produced complexes have been identified by utilizing atomic absorption flame, FT-IR as well UV-Vis spectrum manners also magnetic susceptibility as well as conductivity methods. At addendum antibacterial efficiency from the ligands as well complexes oboist three species about bacteria have been as well examined. Ligands and their complexes show good bacterial efficiencies. Of the gained datum the octahedral geometry was proposed into whole prepared complexes
The synthesized ligand [4-chloro-5-(N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)sulfamoyl)-2-((furan-2-ylmethyl)amino)benzoic acid] (H2L1) was identified utilizing Fourier transform infrared spectroscopy (FT-IR), 1 H, 13 C – NMR, (C.H.N), Mass spectra, UVVis methods based on spectroscopy. To detect mixed ligand complexes, analytical and spectroscopic approaches such as micro-analysis, conductance, UV-Visible, magnetic susceptibility, and FT-IR spectra were utilized. Its mixed ligand complexes [M(L1)(Q)Cl2] [ where M= Co(II), Ni(II) , and Cd(II)] and complexes [Pd(L1)(Q)] and [Pt(L1)(Q)Cl2]; [H2L1] =β-enaminone ligand =L1 and Q= 8-Hydroxyquinoline = L2]. The results showed that the complexes were synthesised utilizing the molar ratio M: L1
... Show MoreIn this work pyrazolin derivatives were prepared from the diazonium chloride salt of 4-aminobenzoic acid. Azo compounds were prepared from the reaction of an ethanolic solution of sodium acetate and calculated amount of active methylene compound namely, acetyl acetone to obtain the corresponding hydrazono derivative (1). Cyclocondensation reaction of compounds (1) with hydrazine hydrate and phenyl hydrazine in boiling ethanol affording the corresponding pyrazoline-5-one derivatives of 4-aminobenzoic acid (2,3). Then compound (3) was reacted with thionyl chloride to give the corresponding acid chloride derivative(4), followed by conversion into the corresponding acid hydrazide derivative (5) carboxylic acid thiosemicarbazide (11), esters
... Show MorePolymer metal complexes of poly ethylene glycol acetal and Ag (I), Cu (II), Ni (II), Mn (II), Co (III) and Hg (II) were prepared from the reaction of PEG with aldehyde derived fromErythro-ascorbic acid (pentulosono-ɣ-lactone-2, 3- enedianisoate). All these compounds were characterized by Thin Layer Chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR,13CNMR, and mass spectra. It has been established that, the polymer and its metal complexes showedgood activities against four pathogenic bacteria (Escherichia coli , Klebsiellapneumonae,Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast). The polymer metal complexes showed higher activity than the free polymer.Theorder
... Show MorePolymer metal complexes of poly ethylene glycol acetal and Ag (I), Cu (II), Ni (II), Mn (II), Co (III) and Hg (II) were prepared from the reaction of PEG with aldehyde derived from Erythro-ascorbic acid (pentulosono-ɣ-lactone-2, 3- enedianisoate). All these compounds were characterized by Thin Layer Chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR,13CNMR, and mass spectra. It has been established that, the polymer and its metal complexes showed good activities against four pathogenic bacteria (Escherichia coli ,Klebsiellapneumonae, Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast). The polymer metal complexes showed higher activity than the free polymer. The
... Show MoreFive novel nickel, iron, cobalt, copper, and mercury complexes were synthesized from tetraazamacrocyclic Schiff base ligand (L), which were derived from 3-(4-(dimethyl amino) benzylidene) pentane-2,4-dione and 1,2- diaminocyclohexane in a 2:2 molar ratio. Many physico-chemical and spectroscopic techniques, including melting point, 1HNMR, 13CNMR, elemental analysis, molar conductance, magnetic susceptibility, UV-Vis, FT-IR, and thermogravimetric analysis (TGA), were used to characterize the Schiff base ligand and all metal complexes. The octahedral geometry of all the complexes [MLCl2] is confirmed by spectroscopic analyses. All substances' biological properties, such as their in vitro antioxidant activity or level of free radical scavenging
... Show MoreIn this research, a new 1, 3, 4-Thiadiazole derivatives have been synthesized by many heterocyclic reactions. Starting from (2, 5 – dimercapto -1, 3, 4-Thiadiazole) a variety of derivatives have been synthesis. Compound (1) was synthesized by the reaction of hydrazine hydrate with carbon disulphide in absolute ethanol. The compound (1) was reacted with 1, 2-dibromoethane in presence of alkali ethanol to give the compound (2). The compound (3) was formed from the reaction of compound (2) with hydrazine hydrate. Schiff base (4) was obtained by reacting of compound (3) with the compound (p-hydroxybenzaldehyde) in absolute ethanol. A variety of phenolic Schiff base (Methylolic, Etheric, and Epoxy) derivatives have been synthesized. Methylol
... Show MoreBiodiesel production process was attracted more attention recently due to the surplus quantity of glycerol (G) as a byproduct from the process. Glycerol Utilization must take in to consideration to fix this issue also, to ensure biodiesel industry sustainability. Highly amount of Glycerol converted to more benefit material Glycerol carbonate (GC) was one of the most allurement compound derived from glycerol by transesterification of glycerol with dimethyl carbonate (DMC). Various parameters have highly impact on transesterification was investigated like catalyst loading (1-5) %wt., molar ratio of DMC: glycerol (5:1 – 1:1), reaction time (30 - 150) min and temperature (40 – 80) ᴼC. The Optimum glycerol carbonate yie
... Show MoreThe pretreatment process can be considered one of the important processes in wastewater treatment, especially coagulation process to decrease the strength of many pollutants. This paper focused on using powdered date seeds as natural coagulant in addition to chemical coagulants (alum and ferric chloride) to find the optimum dosage of each coagulant that makes efficient removal of turbidity and chemical oxygen demand (COD) from domestic wastewater as a pretreatment process, then finding the optimum combined dosages of date seeds with alum, date seeds with ferric chloride that make efficient removal for both pollutants. Concerning turbidity, the optimum dosage for date seeds, alum and ferric chloride were 40 mg/l (79%), 70
... Show More