An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.
The insulation system of a machine coil includes several layers made of materials with different characteristics. The effective insulation design of machine coils, especially in the machine end winding, depends upon an accurate model of the stress grading system. This paper proposes a modeling approach to predict the transient overvoltage, electric field, and heat generation in machine coils with a stress grading system, considering the variation of physical properties in the insulation layers. A non-uniform line model is used to divide the coil in different segments based on material properties and lengths: overhang, stress grading and slot. The cascaded connection of chain matrices is used to connect segments for the representation of the
... Show MoreIn this study, we set up and analyze a cancer growth model that integrates a chemotherapy drug with the impact of vitamins in boosting and strengthening the immune system. The aim of this study is to determine the minimal amount of treatment required to eliminate cancer, which will help to reduce harm to patients. It is assumed that vitamins come from organic foods and beverages. The chemotherapy drug is added to delay and eliminate tumor cell growth and division. To that end, we suggest the tumor-immune model, composed of the interaction of tumor and immune cells, which is composed of two ordinary differential equations. The model’s fundamental mathematical properties, such as positivity, boundedness, and equilibrium existence, are exami
... Show MoreIn solar-thermal adsorption/desorption processes, it is not always possible to preserve equal operating times for the adsorption/desorption modes due to the fluctuating supply nature of the source which largely affects the system’s operating conditions. This paper seeks to examine the impact of adopting unequal adsorption/desorption times on the entire cooling performance of solar adsorption systems. A cooling system with silica gel–water as adsorbent-adsorbate pair has been built and tested under the climatic condition of Iraq. A mathematical model has been established to predict the system performance, and the results are successfully validated via the experimental findings. The results show that, the system can be operational
... Show MoreThe necessary optimality conditions with Lagrange multipliers are studied and derived for a new class that includes the system of Caputo–Katugampola fractional derivatives to the optimal control problems with considering the end time free. The formula for the integral by parts has been proven for the left Caputo–Katugampola fractional derivative that contributes to the finding and deriving the necessary optimality conditions. Also, three special cases are obtained, including the study of the necessary optimality conditions when both the final time and the final state are fixed. According to convexity assumptions prove that necessary optimality conditions are sufficient optimality conditions.
... Show MoreThe avoidance strategy of prey to predation and the predation strategy for predators are important topics in evolutionary biology. Both prey and predators adjust their behaviors in order to obtain the maximal benefits and to raise their biomass for each. Therefore, this paper is aimed at studying the impact of prey’s fear and group defense against predation on the dynamics of the food-web model. Consequently, in this paper, a mathematical model that describes a tritrophic Leslie-Gower food-web system is formulated. Sokol-Howell type of function response is adapted to describe the predation process due to the prey’s group defensive capability. The effects of fear due to the predation process are considered in the first two levels
... Show MoreSolar photovoltaic (PV) has many environmental benefits and it is considered to be a practical alternative to traditional energy generation. The electrical conversion efficiency of such systems is inherently limited due to the relatively high thermal resistance of the PV components. An approach for intensifying electrical and thermal production of air-type photovoltaic thermal (PVT) systems via applying a combination of fins and surface zigzags was proposed in this paper. This research study aims to apply three performance enhancers: case B, including internal fins; case C, back surface zigzags; and case D, combinations of fins and surface zigzags; whereas the baseline smooth duct rep
The inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show MoreNeural stem cells (NSCs) are progenitor cells which have the ability to self‑renewal and potential for differentiating into neurons, oligodendrocytes, and astrocytes. The in vitro isolation, culturing, identification, cryopreservation were investigated to produce neural stem cells in culture as successful sources for further studies before using it for clinical trials. In this study, mouse bone marrow was the source of neural stem cells. The results of morphological study and immunocytochemistry of isolated cells showed that NSCs can be produced successfully and maintaining their self‑renewal and successfully forming neurosphere for multiple passages. The spheres preserved their morphology in culture and cryopreserved t
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show More