An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.
In real conditions of structures, foundations like retaining walls, industrial machines and platforms in offshore areas are commonly subjected to eccentrically inclined loads. This type of loading significantly affects the overall stability of shallow foundations due to exposing the foundation into two components of loads (horizontal and vertical) and consequently reduces the bearing capacity.
Based on a numerical analysis performed using finite element software (Plaxis 3D Foundation), the behavior of model strip foundation rested on dry sand under the effect of eccentric inclined loads with different embedment ratios (D/B) ranging from (0-1) has been explored. The results display that, the bearing capacity of st
... Show MoreBackground: Porcelain veneers are under a great deal of stress which may lead to clinical failure as fracture or dettachment. This study examined whether different finishing lines and lingual shoulder preparations in the incisal area of the maxillary central incisor affect the bond of the porcelain veneers. Materials and methods: A two- dimensional finite element model was made. Location and magnitude of maximum Von Mises stresses were calculated in porcelain veneer. Six types of preparations were drawn as:incisal overlap of 0.5mm, 1mm and 1.5mm depth and lingual shoulder, and incisal overlap of 0.5mm, 1mm and 1.5mm depth without shoulder preparation. Results: Stress formation is maximum in the incisal edge region. All the lingual shoulder
... Show MoreThis research concern to analyse and simulate the temperature distribution in the spot welding joints using tungsten arc welding shielded with inert gas (TIG Spot) for the aluminum-magnesium alloy type (5052-O).
The effect of and the quantity of the heat input that enter the weld zone has been investigated welding current, welding time and arc length on temperature distribution. The finite element method (by utilizing programme ANSYS 5.4) is presented the temperature distribution in a circular weld pool and the weld pool penetration (depth of welding) through the top sheet ,across the interface into the lower sheet forming a weld spot. &nbs
... Show MoreIn this paper, the system of the power plant has been investigated as a special type of industrial systems, which has a significant role in improving societies since the electrical energy has entered all kinds of industries, and it is considered as the artery of modern life.
The aim of this research is to construct a programming system, which could be used to identify the most important failure modes that are occur in a steam type of power plants. Also the effects and reasons of each failure mode could be analyzed through the usage of this programming system reaching to the basic events (main reasons) that causing each failure mode. The construction of this system for FMEA is dependi
... Show MoreIn this paper, a FPGA model of intelligent traffic light system with power saving was built. The intelligent traffic light system consists of sensors placed on the side's ends of the intersection to sense the presence or absence of vehicles. This system reduces the waiting time when the traffic light is red, through the transition from traffic light state to the other state, when the first state spends a lot of time, because there are no more vehicles. The proposed system is built using VHDL, simulated using Xilinx ISE 9.2i package, and implemented using Spartan-3A XC3S700A FPGA kit. Implementation and Simulation behavioral model results show that the proposed intelligent traffic light system model satisfies the specified operational req
... Show MoreThe organization uses many techniques and methods to ensure that they will succeed and adapted with velocity change in the internal and external environment by decision taking, especially strategic decisions.
Strategic decisions are very important for organization success because it can predict the future and deal with uncertainty, in this circumstances they need accurate and comprehensive information to make effective strategic decision.
To achieve that purpose it must owned successful Strategic Information System ( SIS ) and determined the critical success factors for this system ,which can assisted the worker to focus on the important activities to develop it.
... Show MoreIn this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained