An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.
This study investigated the structural behavior of a beam–slab member fabricated using a steel C-Purlins beam carrying a profile steel sheet slab covered by a dry board sheet filled with recycled aggregate concrete, called a CBPDS member. This concept was developed to reduce the cost and self-weight of the composite beam–slab system; it replaces the hot-rolled steel I-beam with a steel C-Purlins section, which is easier to fabricate and weighs less. For this purpose, six full-scale CBPDS specimens were tested under four-point static bending. This study investigated the effect of using double C-Purlins beams face-to-face as connected or separated sections and the effect of using concrete material that contains different recycled
... Show MoreThe prediction process of time series for some time-related phenomena, in particular, the autoregressive integrated moving average(ARIMA) models is one of the important topics in the theory of time series analysis in the applied statistics. Perhaps its importance lies in the basic stages in analyzing of the structure or modeling and the conditions that must be provided in the stochastic process. This paper deals with two methods of predicting the first was a special case of autoregressive integrated moving average which is ARIMA (0,1,1) if the value of the parameter equal to zero, then it is called Random Walk model, the second was the exponential weighted moving average (EWMA). It was implemented in the data of the monthly traff
... Show MoreIn this work , an effective procedure of Box-Behnken based-ANN (Artificial Neural Network) and GA (Genetic Algorithm) has been utilized for finding the optimum conditions of wt.% of doping elements (Ce,Y, and Ge) doped-aluminizing-chromizing of Incoloy 800H . ANN and Box-Behnken design method have been implanted for minimizing hot corrosion rate kp (10-12g2.cm-4.s-1) in Incoloy 800H at 900oC . ANN was used for estimating the predicted values of hot corrosion rate kp (10-12g2.cm-4.s-1) . The optimal wt.% of doping elements combination to obtain minimum hot corrosion rate was calculated using genetic alg
... Show MoreRecurrent respiratory tract infections are responsible for about 85% of all diseases in childhood, and are associated with significant morbidity and mortality. The aim of this study is to evaluate the main causes underlying recurrent respiratory tract infections in 176 pediatric patients aged 2 month to 4 year and weight from 4 to11 kg referred to the child center hospital and Al-sader hospital prospective study.All parents were given information sheet which then analyzed and the percentage of incidence of causes were recorded, we found that higher % related to many causes; mostly related to the parent like poor family education, mother carelessness, incomplete vaccination, other related to empirical diagnosis, and short course of t
... Show MoreBackground: urethrocutaneous fistula after hypospadias surgery repair is the most common complication and remains a frustrating problem for surgeon and the patient. The problem is exacerbated because the urethrocutaneous fistula may recur which adds more demands surgery. Objectives: The purpose of this study is to evaluate of the use of oral mucosal graft for management of recurrent urethrocutaneous fistula after hypospadias repair. Patients and Methods: twelfth patients with age ranging from 4 year to 15 years were presented with history of recurrent fistula. Most of fistula were located in proximal penile and penoscrotal region (58.3%) . those patients were repaired by using oral mucosal graft with mean postoperative follow up period up t
... Show MoreThe Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrat
... Show MoreThe rapid advancements in wireless technology and digital electronics have led to the widespread adoption of compact, intelligent devices in various aspects of daily life. These advanced systems possess the capability to sense environmental changes, process data, and communicate seamlessly within interconnected networks. Typically, such devices integrate low-power radio transmitters and multiple smart sensors, hence enabling efficient functionality across wide ranges of applications. Alongside these technological developments, the concept of the IoT has emerged as a transformative paradigm, facilitating the interconnection of uniquely identifiable devices through internet-based networks. This paper aims to provide a comprehensive ex
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreIn this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.