Preferred Language
Articles
/
SIa7RYYBIXToZYALYYEY
Smart IoT Network Based Convolutional Recurrent Neural Network With Element-Wise Prediction System
...Show More Authors

An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.

Scopus Clarivate Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
Classification of Rural Road Network in Al-Najaf Governorate
...Show More Authors

This study has dealt with, the issue of classification of rural road network , in addition to prepare a suggested for the classification for this network in Iraq , this classification account , the specifications and characteristics of rural roads, population, and the range taking of settlements , then this classification was applied on the rural road network in the Najaf province there are four categories of classification ,the first is major arterial rural roads divided into two major arterial and minor arterial roads , while the second category collected roads which was divided into minor arterial roads and main collected roads. The third category was represented by Local Roads , it has been divided into paved roads and unpaved, the f

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 01 2020
Journal Name
2020 42nd Annual International Conference Of The Ieee Engineering In Medicine & Biology Society (embc)
Recurrent Fusion of Time-Domain Descriptors Improves EMG-based Hand Movement Recognition
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 04 2018
Journal Name
Al-khwarizmi Engineering Journal
Modified Elman Neural-PID Controller Design for DC-DC Buck Converter System Based on Dolphin Echolocation Optimization
...Show More Authors

This paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Journal Européen Des Systèmes Automatisés
Proxy-based sliding mode vibration control with an adaptive approximation compensator for euler-bernoulli smart beams
...Show More Authors

Proxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho

... Show More
Crossref (2)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Nano Hybrids And Composites
Specific NH<sub>3</sub> Gas Sensor Worked at Room Temperature Based on MWCNTs-OH Network
...Show More Authors

Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) network with thickness 4μm was made by the vacuum filtration from suspension (FFS) method. The morphology, structure and optical properties of the MWCNTs film were characterized by SEM and UV-Vis. spectra techniques. The SEM images reflected highly ordered network in the form of ropes or bundles with close-packing which looks like spaghetti. The absorbance spectrum revealed that the network has a good absorbance in the UV-Vis. region. The gas sensor system was used to test the MWCNT-OH network to detect NH3gas at room temperature. The resistance of the sensor was increased when exposed to the NH3gas. The sensitivities of the network w

... Show More
View Publication
Crossref (13)
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Desalination And Water Treatment
Combination of the artificial neural network and advection-dispersion equation for modeling of methylene blue dye removal from aqueous solution using olive stones as reactive bed
...Show More Authors

Scopus (15)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Clinical And Experimental Dentistry
Bond strength of a new Kevlar fiber-reinforced composite post with semi-interpenetrating polymer network (IPN) matrix
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Fri Dec 20 2019
Journal Name
Iet Circuits, Devices & Systems
Multi‐bit error control coding with limited correction for high‐performance and energy‐efficient network on chip
...Show More Authors

In the presence of deep submicron noise, providing reliable and energy‐efficient network on‐chip operation is becoming a challenging objective. In this study, the authors propose a hybrid automatic repeat request (HARQ)‐based coding scheme that simultaneously reduces the crosstalk induced bus delay and provides multi‐bit error protection while achieving high‐energy savings. This is achieved by calculating two‐dimensional parities and duplicating all the bits, which provide single error correction and six errors detection. The error correction reduces the performance degradation caused by retransmissions, which when combined with voltage swing reduction, due to its high error detection, high‐energy savings are achieved. The res

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Dec 30 2024
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be

... Show More
View Publication
Crossref (1)
Crossref