Preferred Language
Articles
/
RxjN2pYBVTCNdQwCO4dW
Semi-Parametric Fuzzy Quantile Regression Model EstimationBased on Proposed Metric via Jensen–Shannon Distance
...Show More Authors

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jul 01 2024
Journal Name
Alexandria Engineering Journal
Comparison of some Bayesian estimation methods for type-I generalized extreme value distribution with simulation
...Show More Authors

The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Optimum Dimensions of Hydraulic Structures and Foundation Using Genetic Algorithm coupled with Artificial Neural Network
...Show More Authors

      A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure aga

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 31 2018
Journal Name
Journal Of Engineering
Estimating Angle of Arrival (AOA) for Wideband Signal by Sensor Delay Line (SDL) and Tapped Delay Line (TDL) Processors
...Show More Authors

Angle of arrival (AOA) estimation for wideband signal becomes more necessary for modern communication systems like Global System for Mobile (GSM), satellite, military applications and spread spectrum (frequency hopping and direct sequence). Most of the researchers are focusing on how to cancel the effects of signal bandwidth on AOA estimation performance by using a transversal filter (tap delay line) (TDL). Most of the researchers were using two elements array antenna to study these effects. In this research, a general case of proposed (M) array elements is used. A transversal filter (TDL) in phase adaptive array antenna system is used to calculate the optimum number of taps required to compensate these effect. The propo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 04 2024
Journal Name
Journal Of Electrical Systems
AI-Driven Prediction of Average Per Capita GDP: Exploring Linear and Nonlinear Statistical Techniques
...Show More Authors

Average per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predi

... Show More
View Publication
Crossref
Publication Date
Thu Feb 15 2024
Journal Name
Journal Of Al-turath University College
A Comparison of Traditional and Optimized Multiple Grey Regression Models with Water Data Application
...Show More Authors

Grey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "m

... Show More
View Publication
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Diversity Operators-based Artificial Fish Swarm Algorithm to Solve Flexible Job Shop Scheduling Problem
...Show More Authors

Artificial fish swarm algorithm (AFSA) is one of the critical swarm intelligent algorithms. In this
paper, the authors decide to enhance AFSA via diversity operators (AFSA-DO). The diversity operators will
be producing more diverse solutions for AFSA to obtain reasonable resolutions. AFSA-DO has been used to
solve flexible job shop scheduling problems (FJSSP). However, the FJSSP is a significant problem in the
domain of optimization and operation research. Several research papers dealt with methods of solving this
issue, including forms of intelligence of the swarms. In this paper, a set of FJSSP target samples are tested
employing the improved algorithm to confirm its effectiveness and evaluate its ex

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Fault Location of Doukan-Erbil 132kv Double Transmission Lines Using Artificial Neural Network ANN
...Show More Authors

Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Predictive Significance of Interleukins 17A and 33 in Risk of Relapsing–Remitting Multiple Sclerosis
...Show More Authors

Cytokines are signaling molecules between inflammatory cells that play a significant role in the pathogenesis of a disease. Among these cytokines are interleukins (ILs) 17A and 33, and accordingly, the current case-control study sought to investigate the role of each of the two cytokines in the risk of developing multiple sclerosis (MS). Sixty-eight relapsing-remitting MS (RRMS) Iraqi patients and twenty healthy individuals (control group) were enrolled. Enzyme linked immunosorbent assay (ELISA) kits were used to determine serum levels of IL-17A and IL-33. Results revealed that IL-17A and IL-33 levels were significantly higher in MS patients than in controls (14.1 ± 4.5 vs. 7.5 ± 3.8 pg/mL; p < 0.001 and 65.3 ± 16

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Chilean Journal Of Statistics
A method of multi-dimensional variable selection for additive partial linear models.
...Show More Authors

In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 01 2012
Journal Name
International Journal Of Computer Science Issues (ijcsi)
Near Rough and Near Exact Subgraphs in Gm-Closure spaces
...Show More Authors

The basic concepts of some near open subgraphs, near rough, near exact and near fuzzy graphs are introduced and sufficiently illustrated. The Gm-closure space induced by closure operators is used to generalize the basic rough graph concepts. We introduce the near exactness and near roughness by applying the near concepts to make more accuracy for definability of graphs. We give a new definition for a membership function to find near interior, near boundary and near exterior vertices. Moreover, proved results, examples and counter examples are provided. The Gm-closure structure which suggested in this paper opens up the way for applying rich amount of topological facts and methods in the process of granular computing.

Preview PDF