Flexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is constructed to estimate states and lumped disturbance in a finite time based on two measurable states, which not only attenuates the measurement noise but also reduces the peaking phenomenon. The closed-loop stability and the finite-time convergence are rigorously proved by using Lyapunov theorem. The upper bound of the finite convergence time is derived for the reaching and sliding phase. Comparative study is conducted experimentally in real time on the FJR manipulator to verify the effectiveness of the proposed control method.
This study aimed to reveal the stage for teachers of basic training needs from the perspective of workers in Mafraq Governorate, through a survey of a sample of counselors look at the Ajloun area schools reached (58) counselors.
To achieve the objective of the study was constructed questionnaire where they are finalized (18) items distributed on two dimensions (professional needs, performance requirements) and after confirmation of the validity and reliability have been applied to the sample where the results showed that training needs were high, both on a professional or per formative level .
The results also showed no statistically significant differences in the areas of tool due to gender, educational qualification. The study co
This study aims to simulate and assess the hydraulic characteristics and residual chlorine in the water supply network of a selected area in Al-Najaf City using WaterGEMS software. Field and laboratory work were conducted to measure the pressure heads and velocities, and water was sampled from different sites in the network and then tested to estimate chlorine residual. Records and field measurements were utilized to validate WaterGEMS software. Good agreement was obtained between the observed and predicted values of pressure with RMSE range between 0.09–0.17 and 0.08–0.09 for chlorine residual. The results of the analysis of water distribution systems (WDS) during maximum demand
The thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show More<span lang="EN-GB">Transmitting the highest capacity throughput over the longest possible distance without any regeneration stage is an important goal of any long-haul optical network system. Accordingly, Polarization-Multiplexed Quadrature Phase-Shift-Keying (PM-QPSK) was introduced lately to achieve high bit-rate with relatively high spectral efficiency. Unfortunately, the required broad bandwidth of PM-QPSK increases the linear and nonlinear impairments in the physical layer of the optical fiber network. Increased attention has been spent to compensate for these impairments in the last years. In this paper, Single Mode Fiber (SMF), single channel, PM-QPSK transceiver was simulated, with a mix of optical and electrical (Digi
... Show MoreIn this work the corrosion behavior of Al metal was studied by using non- destructive testing (NDT), which is a noninvasive technique for determining the integrity of a material. The ultrasonic waves was used to measure the corrosion which occur by two corrosive medium (0.1N sodium chloride and 0.1N sodium hydroxide) and study the corrosion by weight-loss method and electrochemical method in addition to performance the microscopic inspection for the samples before and after the immersion in the corrosive medium. Corrosion parameters were interpreted in these media which involve corrosion potential (Ecorr) and corrosion current density (icorr). The results indicate that both
... Show MoreThis research aims to develop transdermal patches of Ondansetron hydrochloride (OSH) with different types of polymers, ethyl cellulose and, polyvinyl pyrrolidone k30 in a ratio (3:0.5,3:1,3:2,2:1,1:1) with propylene glycol 20%w/w as a plasticizer. Prepared transdermal patches were evaluated for physical properties. The compatibility between the drug and excipients was studied by Differential scanning calorimetry (DSC), where there is no interaction between the drug and polymers. From the statistical study, there is a statistical difference between all the prepared formulations p<0.05. In-vitro Release study of transdermal patches was performed by using a paddle over the disc. The release profile of OSH follow
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More