Preferred Language
Articles
/
RxcXro0BVTCNdQwC3xi7
Implementation of new Secure Mechanism for Data Deduplication in Hybrid Cloud
...Show More Authors

Cloud computing provides huge amount of area for storage of the data, but with an increase of number of users and size of their data, cloud storage environment faces earnest problem such as saving storage space, managing this large data, security and privacy of data. To save space in cloud storage one of the important methods is data deduplication, it is one of the compression technique that allows only one copy of the data to be saved and eliminate the extra copies. To offer security and privacy of the sensitive data while supporting the deduplication, In this work attacks that exploit the hybrid cloud deduplication have been identified, allowing an attacker to gain access to the files of other users based on very small hash signatures of these files. More specifically, an attacker who knows the hash signature of a file can convince the storage service that he/she owns that file, hence the server lets the attacker to download the entire file. To overcome such attacks,the hash signature is encrypted with the user password. As a proof of concept a prototype of the proposed authorized deduplicate is implemented and conducted the test bed experiments using the prototype. Performance measurements indicate that the proposed Deduplication system incurs minimal overhead in the context of uploading, bandwidth compared to native deduplication.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Intelligent Systems
Void-hole aware and reliable data forwarding strategy for underwater wireless sensor networks
...Show More Authors
Abstract<p>Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co</p> ... Show More
View Publication Preview PDF
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Semi parametric Estimators for Quantile Model via LASSO and SCAD with Missing Data
...Show More Authors

In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method

View Publication Preview PDF
Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Compared of estimating two methods for nonparametric function to cluster data for the white blood cells to leukemia patients
...Show More Authors

 

Abstract:                                        

   We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.

    In this research, I estimate the reliability function of cluster function by using the seemingly unrelate

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Correlation of Penetration Rate with Drilling Parameters For an Iraqi Field Using Mud Logging Data
...Show More Authors

This paper provides an attempt for modeling rate of penetration (ROP) for an Iraqi oil field with aid of mud logging data. Data of Umm Radhuma formation was selected for this modeling. These data include weight on bit, rotary speed, flow rate and mud density. A statistical approach was applied on these data for improving rate of penetration modeling. As result, an empirical linear ROP model has been developed with good fitness when compared with actual data. Also, a nonlinear regression analysis of different forms was attempted, and the results showed that the power model has good predicting capability with respect to other forms.

View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Matec Web Of Conferences
Assessing the performance of commercial Agisoft PhotoScan software to deliver reliable data for accurate3D modelling
...Show More Authors

3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D mo

... Show More
View Publication
Scopus (22)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Sun Mar 29 2020
Journal Name
International Journal Of Simulation: Systems, Science &amp; Technology
A New Compact Microstrip Antenna for WSN Applications
...Show More Authors

View Publication
Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Plant Archives
New Irrigation Techniques for Precision Agriculture: A Review
...Show More Authors

Precision irrigation applications are used to optimize the use of water resources, by controlling plant water requirements through using different systems according to soil moisture and plant growth periods. In precision irrigation, different rates of irrigation water are applied to different places of the land in comparison with traditional irrigation methods. Thus the cost of irrigation water is reduced. As a result of the fact that precise irrigation can be used and applied in all irrigation systems, it spreads rapidly in all irrigation systems. The purpose of the Precision Agriculture Technology System (precision irrigation) , is to apply the required level of irrigation according to agricultural inputs to the specified location , by us

... Show More
Preview PDF