<p>The directing of a wheeled robot in an unknown moving environment with physical barriers is a difficult proposition. In particular, having an optimal or near-optimal path that avoids obstacles is a major challenge. In this paper, a modified neuro-controller mechanism is proposed for controlling the movement of an indoor mobile robot. The proposed mechanism is based on the design of a modified Elman neural network (MENN) with an effective element aware gate (MEEG) as the neuro-controller. This controller is updated to overcome the rigid and dynamic barriers in the indoor area. The proposed controller is implemented with a mobile robot known as Khepera IV in a practical manner. The practical results demonstrate that the proposed mechanism is very efficient in terms of providing shortest distance to reach the goal with maximum velocity as compared with the MENN. Specifically, the MEEG is better than MENN in minimizing the error rate by 58.33%.</p>
Finding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved. In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)
... Show MoreThis work is concerned with the vibration attenuation of a smart beam interacting with fluid using proportional-derivative PD control and adaptive approximation compensator AAC. The role of the AAC is to improve the PD performance by compensating for unmodelled dynamics using the concept of function approximation technique FAT. The key idea is to represent the unknown parameters using the weighting coefficient and basis function matrices/vectors. The weighting coefficient vector is updated using Lyapunov theory. This controller is applied to a flexible beam provided with surface bonded piezo-patches while the vibrating beam system is submerged in a fluid. Two main effects are considered: 1) axial stretching of the vibrating beam that leads
... Show MoreAbstract
Abstract has many advantages as has historically been one of the regions leading cultural centers . for centuries , it has been a center of commertial and financial operations in Iraq. it is also rich in archeological sites and natural resources, but because of its wars and implementation of urban development strategies are effective and sustainable , so contracted the secretariat of Baghdad with the company (khatib and scirntiffic) for the preparation of the comprehensive development plan for the city of Baghdad in 2030 and funded by the world bank and the fact that the plan was approved ( three stages of it ) and only one phase remains the fourth stage, which is under discussion the aim of the
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
The paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.
This paper presents the implementation of a complex fractional order proportional integral derivative (CPID) and a real fractional order PID (RPID) controllers. The analysis and design of both controllers were carried out in a previous work done by the author, where the design specifications were classified into easy (case 1) and hard (case 2) design specifications. The main contribution of this paper is combining CRONE approximation and linear phase CRONE approximation to implement the CPID controller. The designed controllers-RPID and CPID-are implemented to control flowing water with low pressure circuit, which is a first order plus dead time system. Simulation results demonstrate that while the implemented RPID controller fails to stabi
... Show MoreIn recent years, the positioning applications of Internet-of-Things (IoT) based systems have grown increasingly popular, and are found to be useful in tracking the daily activities of children, the elderly and vehicle tracking. It can be argued that the data obtained from GPS based systems may contain error, hence taking these factors into account, the proposed method for this study is based on the application of IoT-based positioning and the replacement of using IoT instead of GPS. This cannot, however, be a reason for not using the GPS, and in order to enhance the reliability, a parallel combination of the modern system and traditional methods simultaneously can be applied. Although GPS signals can only be accessed in open spaces, GP
... Show More