Background: In spite of all efforts, Non-small cell lung cancer (NSCLC) is a fatal solid tumor with a poor prognosis as of its high metastasis and resistance to present treatments. Tyrosine kinase inhibitors (TKI) such as erlotinib are efficient in treating NSCLC but the emergence of chemoresistance and adverse effects substantially limits their single use. Objective: in this study, the combination treatments of either 2-deoxy-D-glucose (2DG) or cinnamic acid (CINN) with erlotinib (ERL) were tested for their possible synergistic effect on the proliferation and migration capacity of NSCLC cells. Methods: In this study, NSCLC model cell line A549 was used to investigate the effects of single compounds and their combination on cell growth inhibition, clonogenic potential, and migration capacity. Next, the Combination index (CI) and the Dose-Reduction Index (DRI) were determined to determine the nature of the drug’s combination and to measure how many folds the dose could be lowered for each drug in a synergistic combination. Results: the combination treatment demonstrated more significant inhibition of viability of A549 cells compared to individual therapy. Our data show that CINN augments the sensitivity to erlotinib in all doses tested. The combination of 2DG or CINN with erlotinib also reduced the clonogenicity of NSCLC cells up to 67% and 85%, respectively, as compared to the erlotinib single treatment. Furthermore, CINN +ERL decreased the migratory ability of A549 cells by 3-fold and further induced much more apoptotic cell death phenotypes. Conclusion: in summary, co-administration of 2DG or cinnamic acid with erlotinib increases the inhibitory effects of erlotinib on NSCLC cell tumorigenicity and migration.
Humanity's relationship with the environment is a delicate balance. Since the industrial revolution, the world's population has grown at an exponential rate, and this has a major environmental effect. Deforestation, pollution, and global climate change are just a few of the negative consequences of population and technological growth. Particulates, Sulphur dioxide (SO2), and nitrogen oxides (NOx) are the primary pollutants that harm our health. These contaminants may be directly emitted into the atmosphere (primary pollutants) or formed in the atmosphere from primary pollutants reacting (secondary pollutants. Tropospheric ozone is created When water reacts with volatile organic compounds (VOC) and nitrogen oxides (NOx) in the presen
... Show MoreThis work includes synthesis of sugar tetrazole derivative, D-ribose reacted with acetone in the presence of sulfuric acid H2SO4 to give 2, 3-O-isopropylidene-D-ribose (1). The Aldol condensation of (1) with formaldehyde in methanolic K2CO3 solution gave 2-hydroxymethyl (2, 3-O-isopropylidene-D-ribose)(2). Which was tosylated by Tosyl chloride in pyridine to yield compound (3), SN2 reaction of (3) with sodium cyanide in DMSO afforded compound (4). The [2+ 3] cycloaddition reaction of (4) with sodium azide gave the targeted compound (5). All prepared compounds have been characterized by: TLC, Specific rotation, Microelemental analysis and [FTIR and 1 H NMR spectroscopy]
The present work aims to fabricate n-i-p forward perovskite solar cell (PSC) withئ structure (FTO/ compact TiO2/ compact TiO2/ MAPbI3 Perovskite/ hole transport layer/ Au). P3HT, CuI and Spiro-OMeTAD were used as hole transport layers. A nano film of 25 nm gold layer was deposited once between the electron transport layer and the perovskite layer, then between the hole transport layer and the perovskite layer. The performance of the forward-perovskite solar cell was studied. Also, the role of each electron transport layer and the hole transport layer in the perovskite solar cell was presented. The structural, morphological and electrical properties were studied with X-ray diffractometer, field emission s
... Show MoreSARS-CoV-2 stands for severe acute respiratory syndrome coronavirus 2 which is the causative agent of spreading coronavirus disease 2019 that is known as COVID-19 pandemic, the disease leads to severe acute respiratory illness. Matrix metalloproteinases- 9 (MMP-9) plays several important physiological functions. This enzyme could also be implicated in the "cytokine storm" in some way, which may represent one of the possible scianrios during coronavirus infection, in addition to its role in the mechanism of lung fibrosis on molecular basis.. The tissue inhibitors of metalloproteinase (TIMPs) are well characterized for controlling the activity of MMPs in extracellular matrix remodeling. They also considered as signaling molecules anal
... Show MoreSARS-CoV-2 stands for severe acute respiratory syndrome coronavirus 2 which is the causative agent of spreading coronavirus disease 2019 that is known as COVID-19 pandemic, the disease leads to severe acute respiratory illness. Matrix metalloproteinases- 9 (MMP-9) plays several important physiological functions. This enzyme could also be implicated in the "cytokine storm" in some way, which may represent one of the possible scianrios during coronavirus infection, in addition to its role in the mechanism of lung fibrosis on molecular basis.. The tissue inhibitors of metalloproteinase (TIMPs) are well characterized for controlling the activity of MMPs in extracellular matrix remodeling. They also considered as signaling molecules anal
... Show MoreBackground: Periodontitis and type 2 diabetes mellitus are both considered as a chronic disease that affect many people and have an interrelationship in their pathogenesis. Objective: The aim is to evaluate the salivary levels of interleukin-17 (IL-17) and galectin-3 in patients with periodontitis and type-2 diabetes mellitus. Materials and Methods: The samples were gathered from 13 healthy (control group) and 75 patients split into 3 groups, 25 patients with type 2 diabetes mellitus and healthy periodontium (T2DM group), 25 patients with generalized periodontitis (P group), and 25 patients with generalized periodontitis and type 2 diabetes mellitus (P-T2DM group). Clinical periodontal parameters were documented. The concentration of IL-17
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show More