In present project, new Schiff base of 4, 4'- (((1E, 1'E)-1,4-.phenylenebis- (methane-ylylidene))-bis-(azane-ylylidene)) bis-(5-(4-chlorophenyl) -4H -1,2,4-triazole-3-thione) (L3) has been synthesized by condensation of 4-amino-5-(4-chlorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione with benzene-1,4-dicarboxaldehyde. The new asymmetrical Schiff base (L3) used as a ligand to synthesize a new complex with Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) metal ions by 1:2 (Metal: ligand) ratio. New ligand and their complexes have been exanimated and Confirmed by Fourier-transform infrared (FT-IR), Ultraviolet-visible (UV-visible), Proton nuclear magnetic resonance (1HNMR), carbon13 nuclear magnetic resonance (13CNMR), carbon-hydrogen nitrogen sulf
... Show MoreArtificial neural networks usage, as a developed technique, increased in many fields such as Auditing business. Contemporary auditor should cope with the challenges of the technology evolution in the business environment by using computerized techniques such as Artificial neural networks, This research is the first work made in the field of modern techniques of the artificial neural networks in the field of auditing; it is made by using thesample of neural networks as a sample of the artificial multi-layer Back Propagation neural networks in the field of detecting fundamental mistakes of the financial statements when making auditing. The research objectives at offering a methodology for the application of theartificial neural networks wi
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreBackground: Maxillary canines are important aesthetically and functionally, but impacted canines are more difficult and time consuming to treat, the aim of this study is to investigate with multi-detector computed tomography the correlation between the bone density and the upper canine impaction. Material and method: A sample of Unilaterally impacted maxillary canines from 24 patients (19 female, 5 male) who were referred to accurately localize the impacted canines at al- Karkh general hospital were evaluated by a volumetric 3-d images by the multi-detector computed tomography to accurately measure the bone density of the maxillary cortical palate of the maxillary impacted canine side and compare it with the other side of the normally erupt
... Show MoreBig data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)