Preferred Language
Articles
/
RhbhBIcBVTCNdQwCGC1H
Simulation based comparison of routing protocols in wireless multihop adhoc networks
...Show More Authors

Routing protocols are responsible for providing reliable communication between the source and destination nodes. The performance of these protocols in the ad hoc network family is influenced by several factors such as mobility model, traffic load, transmission range, and the number of mobile nodes which represents a great issue. Several simulation studies have explored routing protocol with performance parameters, but few relate to various protocols concerning routing and Quality of Service (QoS) metrics. This paper presents a simulation-based comparison of proactive, reactive, and multipath routing protocols in mobile ad hoc networks (MANETs). Specifically, the performance of AODV, DSDV, and AOMDV protocols are evaluated and analyzed in the presence of varying the number of mobile nodes, pause time, and traffic connection numbers. Moreover, Routing and QoS performance metrics such as normalized routing load, routing packet, packet delivery ratio, packet drop, end-to-end delay, and throughput are measured to conduct a performance comparison between three routing protocols. Simulation results indicate that AODV outperforms the DSDV and AOMDV protocols in most of the metrics. AOMDV is better than DSDV in terms of end-to-end delay. DSDV provides lower throughput performance results. Network topology parameters have a slight impact on AODV Performance.

Crossref
View Publication
Publication Date
Sun Mar 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Simulation of Radial, Real Gas Flow
...Show More Authors

View Publication Preview PDF
Publication Date
Sun May 02 2021
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Value at risk simulation in a fixed return stock portfolio using the Monte Carlo simulation model The concept of a bond portfolio
...Show More Authors

This research aims to predict the value of the maximum daily loss that the fixed-return securities portfolio may suffer in Qatar National Bank - Syria, and for this purpose data were collected for risk factors that affect the value of the portfolio represented by the time structure of interest rates in the United States of America over the extended period Between 2017 and 2018, in addition to data related to the composition of the bonds portfolio of Qatar National Bank of Syria in 2017, And then employing Monte Carlo simulation models to predict the maximum loss that may be exposed to this portfolio in the future. The results of the Monte Carlo simulation showed the possibility of decreasing the value at risk in the future due to the dec

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-nahrain Journal Of Science
Enhancing Sparse Adjacency Matrix for Community Detection in Large Networks
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Tue Jul 01 2025
Journal Name
Mastering The Minds Of Machines
Recurrent Neural Networks and its Applications in Time Series Data
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Numerical Simulation of Flow in Rectangular Duct with Different Obstruction Heights
...Show More Authors

       In this study, a simulation model inside a channel of rectangular section with high of (0.16 m) containing two rectangular obstruction plates were aligned variable heights normal to the direction of flow, use six model of the obstructions height of (0.059, 0.066, 0.073, 0.08 and 0.087 m) were compared with the flow behavior of the same duct without obstructions. To predict the velocity profile, pressure distribution, pressure coefficient and turbulence kinetic energy flow of air, the differential equations which describe the flow were approximated by the finite volumes method for two dimensional, by using commercial software package (FLUENT) with standard of k-ε model two dimensions turbulence flow.

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Simulation of Heat Storage and Heat Regeneration in Phase Change Material
...Show More Authors

The present study explores numerically the energy storage and energy regeneration during Melting and Solidification processes in Phase Change Materials (PCM) used in Latent Heat Thermal Energy Storage (LHTES) systems. Transient two-dimensional (2-D) conduction heat transfer equations with phase change have been solved utilizing the Explicit Finite Difference Method (FDM) and Grid Generation technique. A Fortran computer program was built to solve the problem. The study included four different Paraffin's. The effects of container geometrical shape, which included cylindrical and square sections of the same volume and heat transfer area, the container volume or mass of PCM, variation of mass flow rate of heat transfer fluid (HTF), and temp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Dec 01 2008
Journal Name
Journal Of Economics And Administrative Sciences
Neural Networks as a Discriminant Purposes
...Show More Authors

Discriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.

In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.  

 

 

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Direction Finding Using GHA Neural Networks
...Show More Authors

 This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).

 

 

View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the method of partial least squares and the algorithm of singular values decomposion to estimate the parameters of the logistic regression model in the case of the problem of linear multiplicity by using the simulation
...Show More Authors

The logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables.                                                        The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.    

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Enhanced Performance of Consensus Wireless Sensor Controlled System via Particle Swarm Optimization Algorithm
...Show More Authors

     This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s

... Show More
View Publication Preview PDF