Bioethanol produced from lignocellulose feedstock is a renewable substitute to declining fossil fuels. Pretreatment using ultrasound assisted alkaline was investigated to enhance the enzyme digestibility of waste paper. The pretreatment was conducted over a wide range of conditions including waste paper concentrations of 1-5%, reaction time of 10-30 min and temperatures of 30-70°C. The optimum conditions were 4 % substrate loading with 25 min treatment time at 60°C where maximum reducing sugar obtained was 1.89 g/L. Hydrolysis process was conducted with a crude cellulolytic enzymes produced by Cellulomonas uda (PTCC 1259).The maximum amount of sugar released and hydrolysis efficiency were 20.92 g/L and 78.4 %, respectively. Sugars released from waste paper were fermented into bioethanol with Saccharomyces cerevisiae. The maximum concentration of bioethanol estimated was 9.5 g/L after 48h of cultivation, the yield and volumetric productivity were 0.454 g/g glucose and 0.2g bioethanol/ L h. respectively. This study of ultrasound and sodium hydroxide treatment may be (we think) it will be a promising technique to develop bioethanol production from waste paper.
A metal mandrel was designed for manufacturing the cathodes of high power electron tube ( Tetrode ) used in broadcasting transmitting tubes type TH558 and CQS200.The cathodes were manufactured in the present work from thoriated tungsten wires ( 2? ThO2- W) with different diameters .These cathodes were carbonized in sequences of processes to determine the carbonization parameters (temperature, pressure, time, current and voltage).Then the carbonized cathodes dimension were accurately measured to determine the deviation due to the high temperature distortion effect at about 1800°C .the distorted cathodes due to the carbonization process was treated when it was subjected inside the vacuum chamber and heat treated again .The carbonized cat
... Show MoreThe electrode in the microbial fuel cell has a significant effect on cell performance. The treatment of the electrode is a crucial step to make the electrode surface more habitable for bacteria growth, thus, increases the power production as well as waste treatment. In the current study, two graphite electrodes were treated by a microwave. The first electrode was treated with 100W microwave energy, while the second one was treated with 600W microwave energy. There is a significant enhancement in the surface of the graphite anode after the pretreatment process. The results show an increase in the power density from 10 mW/m2 to 15 mW/m2 with 100w treatment and to 13.47 mW/m2 with 600w treatment. An organic
... Show MoreOrganogel as a system was to estimate its capacity to delay and slow the drug release in the duodenum. The gelators, 12HSA (12-hydroxystearic acid), span 60. span 40 were used; the castor oil (CO) and anise oil (AO) also represented the liquid phase. To achieve the goal of this work was by using diclofenac sodium (DS). Organogels specifications were by estimating thermal attitude using tabletop rheology and differential scanning calorimetry (DSC). The organogel strength study was by applying oscillatory rheology tests the amplitude sweep and the frequency sweep. Realizing the morphology of the organogel was done utilizing an optical microscope. CO and AO binding capacity was also manifested. The transition temperatures for all organogels
... Show MoreNefopam (N.F.) HCl is a non-narcotic centrally-acting, non-opioid benzoxazocine analgesic to relieve acute and chronic pain. It exhibits low bioavailability (about 36%) due to its first-pass degradation in the liver.
Intranasal administration has been used as a new route for targeting active brain sites and enhancing the bioavailability of N.F. HCl bypassing hepatic metabolism.
In situ gel of N.F. HCl was prepared by the cold method using different concentrations of Poloxamer 407, Poloxamer 188, HPMC K4M, Carbapol 934, and Hyaluronic acid polymers.
The results show that identification tests are superimposed with references, solubility study shows that N.F. HCl is suitable to be administered intranasally; Compatibi
... Show MoreThe aim of this research is to benefit from recycl the aircraft waste oils which is discarded in sewage network, to be used in preparation of greases for industrial purposes and to reduce the environmental pollution. In this research synthetic greases were prepared with special specifications by mixing the waste oils after treating with (silica gel as adsorbent agent, and filtration to precipitate impurities then heated to 110 C? to get rid of water) bentonite produced in Iraq which is available and cheap with existence of high density polyethylene at specific conditions of ( heating and mixing) . The best weight proportion were reached, then paraffin wax and additives were added to improve the properties of grease and give the
... Show MoreThis research concentrate on cultivated Iraqi Agave attenuata dried leaves and roots, because of little studies on this plant especially on the root that lead to the eager of study and comparison of phytochemical constituents between leaves and root. Extraction of bioactive constituents was carried out using several solvents with increasing polarity (n-hexane, ethyl acetate and methanol) by soxhlet apparatus. Steroidal saponins in Agave genus is well documented in many species, lightening the minds in this research on extraction method which is specific for steroidal saponins. Phytochemical screening was done by GC/MS for n-hexane fraction, qualitative and quantitative estimation of several bioactive constituents (caffe
... Show More