Globally, Sustainability is very quickly becoming a fundamental requirement of the construction industry as it delivers its projects; whether buildings or infrastructures. Throughout more than two decades, many modeling schemes, evaluation tools, and rating systems have been introduced en route to realizing sustainable construction. Many of these, however, lack consensus on evaluation criteria, a robust scientific model that captures the logic behind their sustainability performance evaluation, and therefore experience discrepancies between rated results and actual performance. Moreover, very few of the evaluation tools available satisfactorily address infrastructure projects. The research introduces a system engineering model that abstracts the environment, the construction product, and its production system as three interacting systems that exchange materials, energy, and information. The model utilizes this setup to capture and quantify essential flows exchanged between such three systems, to evaluate sustainability. The research walks through the development of a generic case of the model, and then demonstrates its utility in evaluating the sustainability performance of civil infrastructure projects. The developed model will address an identified gap within the current body of knowledge by considering infrastructure projects. Through the ability to simulate different scenarios, the model will enable identifying which activities, products, and processes impact the environment more, and hence potential areas for optimization and improvement.
Research on sustainable design in Iraqi craft industries and ways to develop them is essential to preserving the cultural heritage and authenticity of these industries while promoting environmentally sustainable practices. Lack of access to modern technologies, knowledge and resources may hinder the growth of these industries and their ability to compete in the global market. The research problem revolves around finding ways to develop sustainable design in the Iraqi craft industries. The expected outcomes of this research include a clear definition of sustainable design, understanding the history of sustainable design in the craft industry, identifying different types of craft industries in Iraq, exploring the basic concepts of sustaina
... Show MoreThe goal of current research to the definition of environmental awareness in the curriculum and its role in sustainable environmental planning, was the research community official regular educational schools (kindergarten, primary, secondary) for the province of Baghdad - Iraq, the sample consisted search of (100) teacher and a teacher, and what research was descriptive analytical, researchers have selected the right tool for the research procedures (closed) questionnaire, distributed to the research sample, has been used by researchers appropriate statistical methods for procedures including: the weighted average extraction unit paragraph,
... Show MoreWater scarcity, rising energy costs, and declining irrigation efficiency are significant barriers to wheat production in Iraq. This study evaluates the economic, environmental, and sustainability impacts of integrating artificial intelligence (AI) into irrigation management under semiarid conditions. Field experiments conducted at the Al‐Ra'id Research Station in Baghdad during the 2025 season compared conventional diesel‐based irrigation with AI‐assisted irrigation that used soil moisture sensors, Internet of Things (IoT) controllers, and predictive weather algorithms. The analysis employed Cobb–Douglas production modeling, cost–benefit analysis, net
University campuses in Iraq are substantial energy consumers, with consumption increasing significantly during periods of high temperatures, underscoring the necessity to enhance their energy performance. Energy simulation tools offer valuable insights into evaluating and improving the energy efficiency of buildings. This study focuses on simulating passive architectural design for three selected buildings at Al-Khwarizmi College of Engineering (AKCOE) to examine the effectiveness of their cooling systems. DesignBuilder software was employed, and climatic data for a year in Baghdad was collected to assess the influence of passive architectural strategies on the thermal performance of the targeted buildings. The simulations revealed that the
... Show MoreDetecting the optimum layer for well placement, which requires a diverse assortment of tools and techniques, represents a significant challenge in petroleum studies due to its critical impact on minimizing drilling costs and time. This study aims to evaluate integrated geological, petrophysical, seismic, and geomechanical data to identify the optimum zones for well placement. Three different reservoirs were analyzed to account for lateral and vertical variations in reservoir properties. The integrated data from these reservoirs provides many tools for reservoir development, especially to detect appropriate well placement zones based on evaluations of reservoir and geomechanical quality. The Mechanical Earth Model (MEM) was construct
... Show MoreIn this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show MoreBackground: Proper cleaning and shaping of the whole root canal space have been recognized as a real challenge, particularly in oval-shaped canals.This in vitro study was conducted to evaluate and compare the efficiency of different instrumentation systems in removing of dentin debris at three thirds of oval-shaped root canals and to compare the percentage of remaining dentin debris among the three thirds for each instrumentation system. Materials and methods: Fifty freshly extracted human mandibular molars with single straight oval-shaped distal root canals were randomly divided into five groups of ten teeth each. Group One: instrumentation with ProTaper Universal hand instruments, Group Two: instrumentation with ProTaper Universal rotary
... Show MoreThe paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms
... Show More