Evaluation of trace elements in Iraqi chewing gums are unavailable, particularly pollution of toxic elements, materials which change the values of PH in the Oral. Atomic Absorption Spectroscopy (AAS) were successfully employed to determine the concentration of 7 trace elements (essentially toxic and nonessential) and the PH, in thirteen different brands of chewing gum generally consumed in Iraq. Combined wet and dry digestion procedures were applied. Two types of heated graphite tubes were used, coated and uncoated tubes treated with tungsten solution. Result showed that Cu, Al and Zn were at very high levels in almost all brands whereas Mn was found to be high in brands A and O only.
Theoretical spectroscopic studies of beryllium oxide has been carried out, potential energy curves for ground states X1Σ+ and exited states A1Π , B1Σ+ by using two functions Morse and and Varshni compared with experimental results. The potentials of this molecule are agreement with experimental results. The Fortrat Parabola corrcponding to and branches were determind in the range 1<J<20 for the (0-0) band. It was found that for electronic transition A1Π- X1Σ+ the bands head lies in branche of Fortrat p |
Nerium oleander known as oleander has belonged to the poisonous plants its habitat in a tropical andsubtropical region. The chemical analysis with GC-Mass of the alcoholic extract of oleander leaves revealedthat this plant has many chemical compounds more than 80 compounds and high-peaks about 29 compoundswhich are represented by alkaloids, phenol, terpenes, and fatty acid. HPLC analysis showed many essentialoils that have many biological effects.To evaluate the antibacterial activity of the alcoholic extract of N. oleander against locally isolatedPseudomonas aeroginosa the broth micro-dilution method was adapted to different concentrations werestarted from 3.9 to1000 mg/ml. The results revealed that the alcoholic extract has antiba
... Show MoreSeeds, beans, leaves, fruit peel and seeds of five plants (Ferula assa-foetida, Coffea robusta, Olea europaea, Punica granatum and Vitis vinifera, respectively) were extracted with four solvents (distilled water, 80% methanol, 80% acetone and a mixed solvent that included methanol, ethanol, acetone and n-butanol at proportions 7:1:1:1). Such manipulation yielded 20 extracts, which were phytochemically analyzed for total polyphenols (TP) and flavonoids (TF). The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (RSA) and DPP-4 (dipeptidyl peptidase-4) relative inhibition activity (RIA) were also assessed for each extract. The results revealed that mixed solvent extract of V.
... Show MoreThe bound radial wave functions of Cosh potential which are the solutions to the radial part of Schrodinger equation are solved numerically and used to compute the size radii; i.e., the root-mean square proton, neutron, charge and matter radii, ground density distributions and elastic electron scattering charge form factors for nitrogen isotopes 14,16,18,20,22N. The parameters of such potential for the isotopes under study have been opted so as to regenerate the experimental last single nucleon binding energies on Fermi's level and available experimental size radii as well.
In this study, composite materials consisting of Activated Carbon (AC) and Zeolite were prepared for application in the removal of methylene blue and lead from an aqueous solution. The optimum synthesis method involves the use of metakaolinization and zeolitization, in the presence of activated carbon from kaolin, to form Zeolite. First, Kaolin was thermally activated into amorphous kaolin (metakaolinization); then the resultant metakaolin was attacked by alkaline, transforming it into crystalline zeolite (zeolitization). Using nitrogen adsorption and SEM techniques, the examination and characterization of composite materials confirmed the presence of a homogenous distribution of Zeolite throughout the activated carbon.
... Show MoreElectrodeposition of metal oxides on graphite electrodes can improve their ability to remove organic substances. In this work, multicomponent oxides of Mn, Co, and Ni were electrochemically deposited on both the anode and cathode of graphite electrodes to enhance their performance in removing phenol. Formation of the deposit was achieved within 2 h in current densities of 20, 25, 30, and 35 mA/cm2 for better composite properties. The deposited layer was characterized by testing the surface structure, morphology, composition, and roughness. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Atomic force microscopy (AFM) techniques facilitated these tests. The composite electrodes have synthesized
... Show More