In this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in the middle third of the effective span. The objectives of this study include investigating the behavior of the composite prestressed concrete beams under and after the exposure to a direct fire flame, as well as finding their residual load-carrying capacity. Tests demonstrate significant deteriorations caused by exposure to high temperatures associated with the increase of the member’s camber. The increase of the midspan camber after heating exposure reached approximately 200%. On the other hand, the 1-h steady-state exposure of test specimens to temperatures of 700 and 800 °C led to reduce the load-carrying capacity of the heat-deteriorated beams up to 45% and 54%, respectively.
A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreThe local asphalt concrete fracture properties represented by the fracture energy, J-integral, and stress intensity factor are calculated from the results of the three point bending beam test made for pre notches beams specimens with deformation rate of 1.27 mm/min. The results revealed that the stress intensity factor has increased by more than 40% when decreasing the testing temperature 10˚C and increasing the notch depth from 5 to 30mm. The change of asphalt type and content have a limited effect of less than 6%.
In this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreThis paper presents the effect of relativistic and ponderomotive nonlinearity on cross-focusing of two intense laser beams in a collisionless and unmagnetized plasma. It should be noted here that while considering the self-focusing due to relativistic electron mass variation, the electron ponderomotive density depression in the channel may also be important. Therefore/these two nonlinearties may simultaneously affect the self-focusing process. These nonlinearities depend not only on the intensity of one laser but also on the second laser. Therefore, one laser beam affects the dynamics of the second beam and hence the process of cross-focusing takes place. The electric field amplitude of the excited electron plasma wave (EPW) has been cal
... Show MoreDrug hypersensitivity involves the activation of T cells in an HLA allele–restricted manner. Because the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T cell response. Thus, we have used a T cell–priming assay and nitroso sulfamethoxazole (SMX-NO) as a model Ag to investigate the activation of specific TCR Vβ subtypes, the impact of programmed death -1 (PD-1), CTL-associated protein 4 (CTLA4), and T cell Ig and mucin domain protein-3 (TIM-3) coinhibitory signaling on activation of naive and memory T cells, and the ability of regulatory T cells (Tregs) to prevent responses. An expa
Collapsible behaviour of soil is considered as one of the major problems in the stability of roadway embankment, the lack of cohesion between soil particles and its sensitivity to the change of moisture content are reasons for such problem. Creation of such cohesion may be achieved by implementation of liquid asphalt and introduction of Nano additives. In this work, silica fumes, fly ash and lime have been implemented with the aid of asphalt emulsion to improve the unconfined compressive strength of the collapsible soil. Specimens of 38 mm in diameter and 76 mm height have been prepared with various percentages of each type of Nano additive and fluid content. Specimens were subjected to unconfined compressive strength determination at dry a
... Show MoreDuring the last quarter century, many changes have taken place in the tanks industry and also in the materials that used in its production، while concrete is the most suitable material where concrete tanks has the benefits of strength, long service life and cost effectiveness. So, it is necessary improvement the
conventional concrete in order to adapt the severe environment requirements and as a result high
performance concrete (HPC) was used. It is not fundamentally different from the concrete used in the past, although it usually contains fly ash, ground granulated blast furnace slag and silica fume, as well as
superplasticizer. So, the content of cementitious material is high and the water/cement ratio is low. In this
stu
Reflection cracking in asphalt concrete (AC) overlays is a common form of pavement deterioration that occurs when underlying cracks and joints in the pavement structure propagate through an overlay due to thermal and traffic-induced movement, ultimately degrading the pavement’s lifespan and performance. This study aims to determine how alterations in overlay thickness and temperature conditions, the incorporation of chopped fibers, and the use of geotextiles influence the overlay’s capacity to postpone the occurrence of reflection cracking. To achieve the above objective, a total of 36 prism specimens were prepared and tested using an overlay testing machine (OTM). The variables considered in this study were the thickness of the
... Show More