A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
Solar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show MoreOffline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreIn this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For
... Show MoreThis study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreThe phenomenon of delayed marriage triggered the intention of most researchers and specialists to reveal the social factors associated with the spread of this phenomenon in order to identify the characteristics of that phenomenon and the social factors resulting from it. Thus, the current research aims to identify the social factors most related to the delay in marriage age among working-women at the University of Baghdad, represented by family factors, economic factors-professional, psychological factors – subjective, and environmental factors. The researcher also aims to identify the differences in social factors associated with late marriage age for working women at the University of Baghdad in terms of the type of profession (teach
... Show MoreBackground: Varicose vein (VV) is a common problem that mostly occurs in legs. This medical condition can influence the quality of life and working condition of nurses. Aim of the study: To estimate the prevalence of lower limbs varicosity and its associated risk factors among nurses. Methods: This a cross-sectional descriptive study was carried out among 100 nurses working Baghdad Teaching Hospital, Surgical Specialties Hospital, and Al- Kidney Teaching Hospital, Baghdad, Iraq from January 1st to May 10th, 2022. The participants were recruited in the study using systematic random sampling. The Occupational Sitting and Physical Activity and Aberdeen Varicose Vein Questionnaires were used for data gathering. Results: The prevalence o
... Show MoreThe aim of this research is to find out the satisfaction functional for faculty members
To Girls College of education at the University of Baghdad, and to find out the differences in this variable according to gender and qualification of education.
The sample was chosen from 60 teachers (males – females), they applied a questionnaire consisting of (30) paragraphs after the verifying of sincerity and persistence for paragraphs.
The main findings of the studies,
The results are indicated that the samples (faculty members) have a good level of satisfaction functional. In addition, results are shown; there are no significant differences of statistically between males and females for the faculty members. However, results are sho
In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.