Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. To reduce the number of generated sub-graphs, overlap ratio metric is utilized for this purpose. After encoding the final selected sub-graphs, binary classification is then applied to classify the emotion of the queried input facial image using six levels of classification. Binary cat swarm intelligence is applied within each level of classification to select proper sub-graphs that give the highest accuracy in that level. Different experiments have been conducted using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the final system accuracy was 90.00%. The results show significant accuracy improvements (about 2%) by the proposed system in comparison to current published works in SAVEE database.
The current research aims to study the extent to which the Independent High Electoral Commission applies to information security risk management by the international standard (ISO / IEC27005) in terms of policies, administrative and technical procedures, and techniques used in managing information security risks, based on the opinions of experts in the sector who occupy positions (General Manager The directorate, department heads and their agents, project managers, heads of divisions, and those authorized to access systems and software). The importance of the research comes by giving a clear picture of the field of information security risk management in the organization in question because of its significant role in identifying risks and s
... Show MoreThe research utilizes data produced by the Local Urban Management Directorate in Najaf and the imagery data from the Landsat 9 satellite, after being processed by the GIS tool. The research follows a descriptive and analytical approach; we integrated the Markov chain analysis and the cellular automation approach to predict transformations in city structure as a result of changes in land utilization. The research also aims to identify approaches to detect post-classification transformations in order to determine changes in land utilization. To predict the future land utilization in the city of Kufa, and to evaluate data accuracy, we used the Kappa Indicator to determine the potential applicability of the probability matrix that resulted from
... Show MoreImage pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM
... Show MoreImage fusion is one of the most important techniques in digital image processing, includes the development of software to make the integration of multiple sets of data for the same location; It is one of the new fields adopted in solve the problems of the digital image, and produce high-quality images contains on more information for the purposes of interpretation, classification, segmentation and compression, etc. In this research, there is a solution of problems faced by different digital images such as multi focus images through a simulation process using the camera to the work of the fuse of various digital images based on previously adopted fusion techniques such as arithmetic techniques (BT, CNT and MLT), statistical techniques (LMM,
... Show MoreHand gestures are currently considered one of the most accurate ways to communicate in many applications, such as sign language, controlling robots, the virtual world, smart homes, and the field of video games. Several techniques are used to detect and classify hand gestures, for instance using gloves that contain several sensors or depending on computer vision. In this work, computer vision is utilized instead of using gloves to control the robot's movement. That is because gloves need complicated electrical connections that limit user mobility, sensors may be costly to replace, and gloves can spread skin illnesses between users. Based on computer vision, the MediaPipe (MP) method is used. This method is a modern method that is discover
... Show MoreImage pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). The
... Show MoreThere has been a great deal of research into the considerable challenge of managing of traffic at road junctions; its application to vehicular ad hoc network (VANET) has proved to be of great interest in the developed world. Dynamic topology is one of the vital challenges facing VANET; as a result, routing of packets to their destination successfully and efficiently is a non-simplistic undertaking. This paper presents a MDORA, an efficient and uncomplicated algorithm enabling intelligent wireless vehicular communications. MDORA is a robust routing algorithm that facilitates reliable routing through communication between vehicles. As a position-based routing technique, the MDORA algorithm, vehicles' precise locations are used to establish th
... Show More