Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. To reduce the number of generated sub-graphs, overlap ratio metric is utilized for this purpose. After encoding the final selected sub-graphs, binary classification is then applied to classify the emotion of the queried input facial image using six levels of classification. Binary cat swarm intelligence is applied within each level of classification to select proper sub-graphs that give the highest accuracy in that level. Different experiments have been conducted using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the final system accuracy was 90.00%. The results show significant accuracy improvements (about 2%) by the proposed system in comparison to current published works in SAVEE database.
Artificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forwa
... Show MoreExtracorporeal Shock Wave Lithotripsy (ESWL) is the most commonplace remedy for kidney stone. Shock waves from outside the body frame are centered at a kidney stone inflicting the stone to fragment. The success of the (ESWL) treatment is based on some variables such as age, sex, stone quantity stone period and so on. Thus, the prediction the success of remedy by this method is so important for professionals to make a decision to continue using (ESWL) or tousing another remedy technique. In this study, a prediction system for (ESWL) treatment by used three techniques of mixing classifiers, which is Product Rule (PR), Neural Network (NN) and the proposed classifier called Nested Combined Classi
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreVoice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreThe physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in t
... Show MoreForest fires continue to rise during the dry season and they are difficult to stop. In this case, high temperatures in the dry season can cause an increase in drought index that could potentially burn the forest every time. Thus, the government should conduct surveillance throughout the dry season. Continuous surveillance without the focus on a particular time becomes ineffective and inefficient because of preventive measures carried out without the knowledge of potential fire risk. Based on the Keetch-Byram Drought Index (KBDI), formulation of Drought Factor is used just for calculating the drought today based on current weather conditions, and yesterday's drought index. However, to find out the factors of drought a day after, the data
... Show MoreThis paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord
... Show MoreIn this paper, new method have been investigated using evolving algorithms (EA's) to cryptanalysis one of the nonlinear stream cipher cryptosystems which depends on the Linear Feedback Shift Register (LFSR) unit by using cipher text-only attack. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) which are used for attacking one of the nonlinear cryptosystems called "shrinking generator" using different lengths of cipher text and different lengths of combined LFSRs. GA and ACO proved their good performance in finding the initial values of the combined LFSRs. This work can be considered as a warning for a stream cipher designer to avoid the weak points, which may be f
... Show MoreIn this paper, the problem of resource allocation at Al-Raji Company for soft drinks and juices was studied. The company produces several types of tasks to produce juices and soft drinks, which need machines to accomplish these tasks, as it has 6 machines that want to allocate to 4 different tasks to accomplish these tasks. The machines assigned to each task are subject to failure, as these machines are repaired to participate again in the production process. From past records of the company, the probability of failure machines at each task was calculated depending on company data information. Also, the time required for each machine to complete each task was recorded. The aim of this paper is to determine the minimum expected ti
... Show MoreThis study aims to develop a recommendation engine methodology to enhance the model’s effectiveness and efficiency. The proposed model is commonly used to assign or propose a limited number of developers with the required skills and expertise to address and resolve a bug report. Managing collections within bug repositories is the responsibility of software engineers in addressing specific defects. Identifying the optimal allocation of personnel to activities is challenging when dealing with software defects, which necessitates a substantial workforce of developers. Analyzing new scientific methodologies to enhance comprehension of the results is the purpose of this analysis. Additionally, developer priorities were discussed, especially th
... Show More