Most heuristic search method's performances are dependent on parameter choices. These parameter settings govern how new candidate solutions are generated and then applied by the algorithm. They essentially play a key role in determining the quality of the solution obtained and the efficiency of the search. Their fine-tuning techniques are still an on-going research area. Differential Evolution (DE) algorithm is a very powerful optimization method and has become popular in many fields. Based on the prolonged research work on DE, it is now arguably one of the most outstanding stochastic optimization algorithms for real-parameter optimization. One reason for its popularity is its widely appreciated property of having only a small number of parameters to tune. This paper presents a detailed review of DE parameter tuning with a table compromised a recommended guidelines for these parameters, along with a full description of the basic DE algorithm and its corresponding operators, overlooked by previous studies. It is aimed at practitioners to help them achieve better results when adopting DE as an optimization method for their problems with less time and effort. Moreover, an experimental study has been conducted over fifteen test problems and the results obtained prove the reliability of the setting values.
An efficient modification and a novel technique combining the homotopy concept with Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced in this paper . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.
Abiotic stress-induced genes may lead to understand the response of plants and adaptability to salinity and drought stresses. Differential display reverse transcriptase – polymerase chain reaction (DDRT-PCR) was used to investigate the differences in gene expression between drought- and salinity-stressed plantlets of Ruta graveolens. Direct and stepwise exposures to drought- or salt-responsive genes were screened in R. graveolens plantlets using the DDRT technique. Gene expression was investigated both in the control and in the salt or drought-stressed plantlets and differential banding patterns with different molecular sizes were observed using the primers OPA-01 (646,770 and 983 pb), OPA-08 (593 and 988 pb), OPA-11 (674 and 831 pb
... Show MoreFor the purpose of achieving the desired goal of the educational learning process, it was necessary to devote attention to educational means and employ them in this field because of their great role in overcoming the difficulties facing the learning process and providing an educational environment that keeps abreast of the scientific developments. This is the goal of the research in which the researchers wanted to know the effect of the educational techniques in the development of apprentice students' skills in teaching.
The research consisted of the problem of the research which is: what is the impact of educational techniques on developing the apprentice students' teaching skills in the Faculty of Fine Arts? In addition to its imp
In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
Nurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si
... Show MoreRegression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls sh
... Show MoreAn Optimal Algorithm for HTML Page Building Process
Abstract
Hexapod robot is a flexible mechanical robot with six legs. It has the ability to walk over terrain. The hexapod robot look likes the insect so it has the same gaits. These gaits are tripod, wave and ripple gaits. Hexapod robot needs to stay statically stable at all the times during each gait in order not to fall with three or more legs continuously contacts with the ground. The safety static stability walking is called (the stability margin). In this paper, the forward and inverse kinematics are derived for each hexapod’s leg in order to simulate the hexapod robot model walking using MATLAB R2010a for all gaits and the geometry in order to derive the equations of the sub-constraint workspaces for each
... Show MoreA novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul
... Show MoreFor several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.