This study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.8. The experimental findings reveal that altering the GFRP stirrup spacing along the longitudinal axis of the beams, from 200 mm (equivalent to the effective depth (d)) to 50 mm (equal to (d⁄4)), altered the mode of failure from flexure-shear to flexure-compression. However, when the spacing was equal to or less than (d⁄3), there was no significant improvement in load-carrying capacity, as the contribution of GFRP bars in resisting shear loads was limited. Under service loads, the GFRP-reinforced beams exhibited wider cracks, but reducing the stirrup spacing helped restrain crack widening. Incorporating GFRP bars in the compression zone had a positive effect on reducing crack width in the tension zone. Additionally, using GFRP stirrups with spacing varying between (d) and (d⁄2) in the pure bending region increased the deflection ductility indexes. To enhance the ductility of GFRP-reinforced concrete beams, it is recommended to use GFRP stirrups in the pure bending region with spacing greater than the spacing between GFRP stirrups in the shear spans. The study highlights that the current ACI code overestimates the shear capacity provided by GFRP stirrups, particularly when the spacing is less than or equal to (d⁄3). Doi: 10.28991/CEJ-2024-010-02-011 Full Text: PDF
Computational study of three-dimensional laminar and turbulent flows around electronic chip (heat source) located on a printed circuit board are presented. Computational field involves the solution of elliptic partial differential equations for conservation of mass, momentum, energy, turbulent energy, and its dissipation rate in finite volume form. The k-ε turbulent model was used with the wall function concept near the walls to treat of turbulence effects. The SIMPLE algorithm was selected in this work. The chip is cooled by an external flow of air. The goals of this investigation are to investigate the heat transfer phenomena of electronic chip located in enclosure and how we arrive to optimum level for cooling of this chip. These par
... Show MoreA hydrophilic interaction chromatography has been investigated to separate 2-deoxycytidine chosen for nucleoside. A small molecule with specific features for human serum samples was 2-deoxycytidine tested. 2-deoxycytidine has been applied to self-made stationary hydrophilic phases (ZIC1 and ZIC5). The deoxycytidine (dCD) retention was investigated with varying concentrations of sodium acetate buffer, acetonitrile%, and pH. The results confirmed the hydrophilicity of 2-deoxycytidine. The exchanger retention mechanism was studied taking into account 2-deoxycytidine used for describing the interaction of hydrophilic and cation. For both ZIC1 and ZIC5 exchangers, we described and discussed the influence of chromatographic conditions (co
... Show MoreThe corrosion behavior of bare and chemical conversion coated (through anodizing) aluminum ASA 606 I in stagnant chromic acid solutions . Solutions of 2, 6 & J O wt. % Cr03 at 45°C, have been investigated using polarization technique. The anodizing experiments were conducted under fixed conditions of 35 minute exposure time and 30 volt supplied voltage. The most important feature achieved was the great difference in behavior between the anodic polarization curves for bare and anodized aluminum in different concentrations of chromic acid solutions.
The sorption of Cu2+ ions from synthetic wastewater using crushed concrete demolition waste (CCDW) which collected from a demolition site was investigated in a batch sorption system. Factors influencing on sorption process such as shaking time (0-300min), the initial concentration of contaminant (100-750mg/L), shaking speed (0-250 rpm), and adsorbent dosage (0.05-3 g/ml) have been studied. Batch experiments confirmed that the best values of these parameters were (180 min, 100 mg/l, 250 rpm, 0.7 g CCDW/100 ml) respectively where the achieved removal efficiency is equal to 100%. Sorption data were described using four isotherm models (Langmuir, Freundlich, Redlich-Peterson, and Radke-Prausnitz). Results proved that the pure ads
... Show MoreConcrete is widely used in construction materials since early 1800's. It has been known that concrete is weak in tension, so it requires some addition materials to have ductile behavior and enhance its tensile strength and strain capacity to improve their uses. In this study reactive powder concrete (RPC) was used with steel fiber by using different types of cement; (Ordinary Portland cement (OPC) and/or Portland- Limestone cement (PLC)) with three types of mixtures (OPC at the first mix, 50 % OPC and 50 % PLC at the second mix and PLC at the third mix). The behavior of RPC with steel fibers on compressive strength and tensile strength of concrete with different ages of curing (7, 14, 28 and 60) days and shrinkage have been studied. The clo
... Show MoreStrengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha
... Show More
Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.
The aim of this research is to study experime
... Show MoreBackground: Recurrent aphthous ulceration (RAU) is an inflammatory condition of unknown etiology characterized by painful recurrent (single or multiple) ulcerations of the oral mucosa. It is one of the most common and poorly understood mucosal disorders. It occurs more frequently in times of stress. Local and systemic conditions, genetic, immunologic, microbial factors, and oxidative stress may play a role in the pathogenesis of RAU. The objective of this study was to evaluate the free radical metabolism and antioxidant activity of RAU patients treated by lavender or flax oil paint.
Materials and Methods: Sixty-six RAU patients were enroll
... Show More