Audio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some area such as W.C. or sleeping room. Thus, its commonly difficult to identify any movement or breakthrough process, on the other hand when need to pursue suspect when enter a building or party to identify his location and/or listen to his speech only and isolate it from other voices or noises, the other. Hence, the use of the hybrid combination technique is very effective. In this work, we proposed a multimodal human recognition approach that utilizes both the face and audio and is based upon a deep convolutional neural network (CNN). Mainly, to solve the challenge of not capturing part of the body, final results of recognizing via separate CNNs of VGG Face16 and ResNet50 are joined together depending on the score-level combination by Weighted Sum rule to enhance recognition performance. The results show that the proposed system success to recognise each person from his voice and/or his face captured. In addition, the system can separate the person voice and isolate it from noisy environment and determine the existence of desired person.
Human Interactive Proofs (HIPs) are automatic inverse Turing tests, which are intended to differentiate between people and malicious computer programs. The mission of making good HIP system is a challenging issue, since the resultant HIP must be secure against attacks and in the same time it must be practical for humans. Text-based HIPs is one of the most popular HIPs types. It exploits the capability of humans to recite text images more than Optical Character Recognition (OCR), but the current text-based HIPs are not well-matched with rapid development of computer vision techniques, since they are either vey simply passed or very hard to resolve, thus this motivate that
... Show MoreA collection of pictures of traditional Kurdish women's national clothing and contemporary clothing was collected. A visit was also made to the city of Sulaymaniyah and the city of Halabja to find out the foundations of traditional clothing for the Kurdish regions and the impact of contemporary fashion on traditional dress. Which represents the culture and regionalism and reflects the picturesque nature of northern Iraq, and in order to complete the study, the parametric measurements of the clothes were analyzed and the graphs of the dress and its accessories were re-drawn to understand and make a comparison between them to study the clear influences and changes and examine the possibility of benefiting from them in sewing contemporary f
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreSoftware-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show MoreThis study seeks to shed light on the aspects of visual pollution and its impact on the aesthetics of the town of Al-Eizariya known to suffer from the phenomenon. In order to identify the real causes of the problem which develops in various forms and patterns, threatening not only the aesthetic appearance of the towns, but also causes the emergence of new problems and phenomena that will have negative repercussions on the population. The researcher uses the analytical descriptive method to analyze the phenomenon of visual pollution in terms of reality, development, manifestations and spread and uses photos which document the visual pollution and its impact on the aesthetics of the known. The study concluded the existence of a strong rela
... Show MoreFor several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
The efficiency of attapulgite liners as anti-seepage for crude oil is examined. Consideration is given to the potential use of raw attapulgite and mixture attapulgite with prairie hay and coconut husk as liners to prevent crude oil seepage. Attapulgite clay used in this study was brought from Injana formation /Western Desert of Iraq. Two types of Crude oil brought from Iraqi oil fields were used in experiments; heavy crude oil from East-Baghdad oil field and light crude oil from Nassiriya oil field. Initially the basic properties of attapulgite and crude oils were determined. The attapulgite clay was subjected to mineralogical, chemical and scanning electron microscope analyses. Raw Attapulgite 150µm, 75µm, and 53µm were tested
... Show More