Preferred Language
Articles
/
QhbCBocBVTCNdQwCADBG
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Trees (DT), K- nearest neighbor (KNN), and Logistic Regression (LR), have been used to identify the parameters that allow for effective price estimation. These approaches were tested on a data set of an extensive Indian airline network. When it came to estimating flight prices, the results demonstrate that the Decision tree method is the best conceivable Algorithm for predicting the price of a flight in our particular situation with 89% accuracy. The SGD method had the lowest accuracy, which was 38 %, while the accuracies of the KNN, NB, ADA, and LR algorithms were 69 %, 45 %, and 43 %, respectively. This study's presented methodologies will allow airline firms to predict flight prices more accurately, enhance air travel, and eliminate delay dispersion.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 20 2025
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using a 3D Chaotic Dynamic System as a Random Key Generator for Image Steganography
...Show More Authors

In today's digital era, the importance of securing information has reached critical levels. Steganography is one of the methods used for this purpose by hiding sensitive data within other files. This study introduces an approach utilizing a chaotic dynamic system as a random key generator, governing both the selection of hiding locations within an image and the amount of data concealed in each location. The security of the steganography approach is considerably improved by using this random procedure. A 3D dynamic system with nine parameters influencing its behavior was carefully chosen. For each parameter, suitable interval values were determined to guarantee the system's chaotic behavior. Analysis of chaotic performance is given using the

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 01 2025
Journal Name
Mastering The Minds Of Machines
Deep Reinforcement Learning: Bridging Learning and Control in Intelligent Systems
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jan 28 2026
Journal Name
Journal Of Physical Education
The Effect of Varied Teaching Strategies on Learning Backstroke Swimming for Students
...Show More Authors

View Publication
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (5)
Clarivate Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (32)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Restaurant Business
The role of using fair value on relevance and representation faithfulness of accounting information in accordance with the common conceptual framework (FASB-IASB)
...Show More Authors

The global trend towards the use of fair value accounting is increasing, so the current study aimed to maximize the impact of fair value application on achieving relevance and representation faithfulness of accounting information in accordance with the common conceptual framework. To achieve the objective of this study, the researcher has determined in the theoretical framework the relationship of fair value with the characteristics of relevance and representation faithfulness of accounting information and the extent of achieving these characteristics, as well as conducting a field study by preparing a questionnaire distributed to a sample of academics (50) and auditors (50) with a total number of selected participants (100) of acad

... Show More
View Publication
Publication Date
Mon Oct 22 2018
Journal Name
Journal Of Economics And Administrative Sciences
Measuring and analyzing the relationship between the volatility of US stock market indices and the volatility of oil prices
...Show More Authors

The volatility of the financial markets and the oil market plays a major role in influencing macroeconomic activity, as well as the high interaction between the both markets and the remarkable sensitivity to their each other fluctuations which cause the undesirable impact on other economic sectors as an expected result due the mentioned interaction.

The study aimed to analyze the relationship between the volatility of the major US market indices represented by the DJIA index, S & P500, due to their comprehensiveness of the financial market, as they summarize the performance of the entire US market which is the largest economy in the world, as well as the difference in the calculation mechanism, and oi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Mar 08 2023
Journal Name
Sensors
A Critical Review of Remote Sensing Approaches and Deep Learning Techniques in Archaeology
...Show More Authors

To date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip

... Show More
View Publication
Scopus (18)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.

  &nbsp

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.       In this research, we pr

... Show More
Preview PDF
Scopus (2)
Scopus Crossref