Zinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good absorbance spectra along the UV-Vis wavelength alongside various optical bandgaps at different reaction temperatures and growth times. Subsequently, the PL analysis demonstrated two primary instinct band emissions at the UV and visible light regions. The bandgap and defect sites obtained during the PL analysis revealed that reaction temperature and growth time play a crucial role in the alignment of the bandgap and defects. ZnO sample prepared at 100 °𝐶 and 8 ℎ𝑟𝑠. exhibited the upmost bandgap value (3.351 𝑒𝑉).
Net pay is one of the most important parameters used in determining initial oil in place of a reservoir. It can be delineated through the using of limiting values of the petrophysical properties of the reservoir. Those limiting values are named as the cutoff. This paper provides an insight into the application of regression line method in estimating porosity, clay volume and water saturation cutoff values in Mishrif reservoir/ Missan oil fields. The study included 29 wells distributed in seven oilfields of Halfaya, Buzurgan, Dujaila, Noor, Fauqi, Amara and Kumait.
This study is carried out by applying two types of linear regressions: Least square and Reduce Major Axis Regression.
The Mishrif formation was
... Show MoreTin oxide was deposited by using vacuum thermal method on silicon wafer engraved by Computer Numerical Controlled (CNC) Machine. The inscription was engraved by diamond-made brine. Deep 0.05 mm in the form of concentric squares. Electrical results in the dark were shown high value of forward current and the high value of the detection factor from 6.42 before engraving to 10.41 after engraving. (I-V) characters in illumination with powers (50, 100, 150, 200, 250) mW/cm2 show Improved properties of the detector, Especially at power (150, 200, 250) mW/cm2. Response improved in rise time from 2.4 μs to 0.72 μs and time of inactivity improved 515.2 μs to 44.2 μs. Sensitivity angle increased at zone from 40o to 65o.
The purpose of this study was to determine the influence of environmental pH on production of biofilms and virulence genes expression in Pseudomonas aeruginosa.
Among 303 clinical and environmental samples 109 (61 + 48) isolates were identified as clinical and environmental P. aeruginosa isolates, respectively. Clinical samples were obtained from patients in the Al-Yarmouk hospital in Baghdad city, Iraq. Waste water from Al-Yarmouk hospital was used from site before treatment unit to collect environmental samples. The ability of prod
Background: The demand for esthetic orthodontic appliances is increasing; so the esthetic orthodontic archwires were introduced. Among them, Teflon and Epoxy coated stainless steel archwires. The amount of force available from the archwire depends on the structural properties and susceptibility to corrosion. All metallic alloys are changed during immersion in artificial saliva, chlorhexidine mouthwash andtoothpaste, but their behaviors differ from one type to another. They corrode at different rates, which lead to decrease the amount of force applied to the teeth. This in vitro study was designed to evaluate the corrosion pits in stainless steel archwires coated with Teflon and with Epoxy in dry and after immersion in artificial saliva, chl
... Show MoreIn this study, investigations of structural properties of n-type porous silicon prepared by laser assisted-electrochemical etching were demonstrated. The Photo- electrochemical Etching technique, (PEC) was used to produce porous silicon for n-type with orientation of (111). X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon surfaces. Atomic force microscopy (AFM) analysis was used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of porous silicon decreased as etching current density increased. The chemical bonding and structure were investigated by using fourier transformation infrared spec
... Show MoreThe study was conducted to show the effect of using dried rumen powder as a source of animal protein in the diets of common carp (Cyprinus carpio L.) on its performance, in the fish laboratory/College of Agricultural Engineering Sciences/University of Baghdad/ for a period of 70 d, 70 fingerlings were used with an average starting weight of 30±3 g, with a live mass rate of 202±2 g, randomly distributed among five treatments, two replicates for each treatment and seven fish for each replicate. Five diets of almost identical protein content and different percentages of addition of dried rumen powder were added. 25% was added to treatment T2 and 50% to treatment T3 and 75% of the treatment T4 and 100% of the treatment T5
... Show MoreIn this work, a novel system is designed to remote monitor / automatic control of the temperature, humidity and soil moisture of the agricultural greenhouses. In the proposed system, the author used the mentioned sensors for monitoring the climatic conditions of the agricultural greenhouses; and the system makes a controlling process to fix the required parameters for plant growth by running / stopping the fan, air exchanger and irrigation devices when any changes happened in these parameters. The presented system is based on XBee protocol in the implemented wireless sensor star topology network (WSN) to monitor the agricultural greenhouses in real time, and used the GSM and Internet technologies to monitor the agricultu
... Show MoreThe aim of this research is to employ starch as a stabilizing and reducing agent in the production of CdS nanoparticles with less environmental risk, easy scaling, stability, economical feasibility, and suitability for large-scale production. Nanoparticles of CdS have been successfully produced by employing starch as a reducing agent in a simple green synthesis technique and then doped with Sn in certain proportions (1%, 2%, 3%, 4%, and 5%).According to the XRD data, the samples were crystallized in a hexagonal pattern, because the average crystal size of pure CdS is 5.6nm and fluctuates in response to the changes in doping concentration 1, 2, 3, 4, 5 %wt Sn, to become 4.8, 3.9, 11.5, 13.1, 9.3 nm respectively. An increase in crystal
... Show More