In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and the plasticity index of the soil.
The present study dealt with taxonomic characters of species Zygophyllum fabago L. in Iraq . this study included the exo-morphological characters which indicated that the species was sub-shrub with solid stem and swallow nodes ,with compound bifoliate and stipulate leaves, the flower is complete and perfect with clawed petals . stamen colored with scaly appendage , fruit capsule with ribs . Anatomical study of vegetative parts indicate that the sclerenchymal tissue was very diffuse in stem such as fibers and sclerides ( stone cells ) , the leaves were bifacial . The geographical distiribution of the species plants was studied . The results supported with photographs
This paper studies the investment project evaluation under the condition of uncertainty. Evaluation of investment project under risk and uncertainty is possible to be carried out through application of various methods and techniques. The best known methods are : Risk-adjusted discount rate , certainty equivalent method , Sensitivity analysis and Simulation method The objective of this study is using the sensitivity analysis in evaluation Glass Bottles project in Anbar province under the condition of risk and uncertainty.
After applying sensitivity analysis we found that the glass bottles project sensitive to the following factors (cash flow, the cost of investment, and the pro
... Show MoreWith the increasing demands to use remote sensing approaches, such as aerial photography, satellite imagery, and LiDAR in archaeological applications, there is still a limited number of studies assessing the differences between remote sensing methods in extracting new archaeological finds. Therefore, this work aims to critically compare two types of fine-scale remotely sensed data: LiDAR and an Unmanned Aerial Vehicle (UAV) derived Structure from Motion (SfM) photogrammetry. To achieve this, aerial imagery and airborne LiDAR datasets of Chun Castle were acquired, processed, analyzed, and interpreted. Chun Castle is one of the most remarkable ancient sites in Cornwall County (Southwest England) that had not been surveyed and explored
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreAverage per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predi
... Show MorePrediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show More