In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and the plasticity index of the soil.
The increased applications of technology in the field of architecture, especially digital technology and aspects of automation, have made a major impact on various aspects of local architecture, especially the traditional ones. As these technologies have succeeded in integrating many technological applications in many traditional and heritage buildings and taking them to more complex uses. And included in it characteristics that were not contained, therefore the research problem was concentrated in the absence of a holistic view of the role of the aspects of automation as a technological and design effect and its mutual effects on traditional buildings (especially the traditional Bagh
Background: Dyslipidemia is defined as an abnormally high level of various lipids in the blood. It is considered a major risk for atherosclerosis and coronary artery disease. Genetic susceptibility can have a significant influence on the development and progression of dyslipidemia. ApoB-100 R3500Q mutation and ApoE variants are among those genetic risks for dyslipidemia. This study aims to assess the possible contribution of ApoB and ApoE variants on lipid profile among a group of early-onset ischemic heart disease (IHD) patients in comparison to a group of controls. Methods: Forty patients with dyslipidemia and early-onset IHD without chronic conditions likely to cause derangement of lipid levels were recruited to this case-control study
... Show MoreThe research examines the extent to which government spending decisions can affect the level of the financial performance of the directorate. The research problem was based on the financial reality of the Directorate of Sewerage of Diyala province. Spending on the Directorate of the research area. To achieve a set of objectives: indicate the impact of government spending decisions on financial performance, the use of financial analysis to assess the performance of the Directorate. The research adopted financial analysis tools, a set of financial ratios, through which the spending decisions taken by the Directorate of the field of research will be evaluated, and during the period (2014-2018). The research also adopted statistical
... Show MoreIn this study, we investigate the behavior of the estimated spectral density function of stationary time series in the case of missing values, which are generated by the second order Autoregressive (AR (2)) model, when the error term for the AR(2) model has many of continuous distributions. The Classical and Lomb periodograms used to study the behavior of the estimated spectral density function by using the simulation.
KE Sharquie, AA Noaimi, ZM Mijthab, J Clin Exp Dermatol Res, 2012 - Cited by 5
The research aims to present a proposed strategy for the North Oil Company, and the proposed strategy took into account the surrounding environmental conditions and adopted in its formulation on the basis and scientific steps that are comprehensive and realistic, as it covered the main activities of the company (production and exploration activities, refining and refining activities, export and transport of oil, research and development activity, financial activity, information technology, human resources) and the (David) model has been adopted in the environmental analysis of the factors that have been diagnosed according to a
... Show More
The heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units.
Evaluation of reservoir characterization was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) an
... Show Moreيهدف البحث الى تقديم استراتيجية مقترحة لشركة نفط الشمال ، وأخذت الاستراتيجية المقترحة بنظر الاعتبار الظروف البيئية المحيطة واعتمدت في صياغتها على اسس وخطوات علمية تتسم بالشمولية والواقعية ، اذ انها غطت الانشطة الرئيسية في الشركة (نشاط الانتاج والاستكشاف , نشاط التكرير والتصفية , التصدير ونقل النفط , نشاط البحث والتطوير , النشاط المالي , تقنية المعلومات , الموارد البشرية ) وقد اعتمد نموذج (David) في التحليل البيئي
... Show MoreThe heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units. Evaluation of reservoir characterization was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) and global hydraulic elements (GHE
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show More