Objective To evaluate recently developed acidic calcium-phosphate (CaP) pastes as conservative enamel-conditioning systems for bracket bonding and investigate their effects on the shear bond strength, adhesive residues, and enamel damage in comparison to a conventional 37 % phosphoric acid (PA) gel. Materials and methods Two experimental etchant pastes consisting of hydroxyapatite and monocalcium phosphate monohydrate were prepared by mixing them with 37 % and 10 % PA solutions, respectively. These were characterized using X-ray diffraction. Metal brackets were bonded to 90 freshly extracted human premolars and assigned to three groups, depending on etchant type: 37 % PA-gel (control) and the two experimental (HPA and MPA) pastes. Shear bond strengths (SBS), adhesive remnant index scores, and enamel damage for the three groups were compared at 24 h water storage and after 5000 thermocycles. Enamel etch pattern, surface damage, and CaP precipitation were evaluated through FE-SEM. Surface Vickers micro-hardness (VHN) following etching procedures was compared to the unetched enamel surface. Results HPA and MPA pastes yielded significantly lower SBS values than 37 % PA-gel (p < 0.001), induced a milder etch pattern, unblemished enamel surfaces and CaP re-precipitation with no or minimal adhesive residues post-bracket debonding as compared to 37 % PA-gel. Moreover, the HPA paste-etched enamel revealed the highest (p < 0.001) micro-hardness value (232 VHN). Conclusions Enamel conditioning using the CaP pastes, particularly the HPA, may evoke CaP re-precipitation and cause minimal enamel damage, with greater efficiency at bracket debonding/enamel cleaning procedures. Furthermore, it yields low adhesive residues and potentially adequate bond strength for clinical performance in comparison to conventional PA gel. Clinical Significance Enamel etching with the developed paste prior to orthodontic bonding might lessen the development of white spot lesions during treatment, with the potential of reducing the prolonged chair time for clean-up and polishing usually required whenever PA is used.
There are many causes for epistaxis but it is mainly idiopathic in type. In Management of epistaxis there are different modality either medical or cautery(chemical or galvanic) recently laser is used in management of epistaxis. The type of laser used in current study was 810 nm diode laser. The aim of the study is to evaluate its efficiency in control of active and non active idiopathic epistaxis; The design of the study is interventional therapeutic trial. The study was performed from December 2011 to December 2012 in Al Yarmouk teaching hospital at otorhinolaryngology department. In current study the diode laser is used in different power with same exposure time in all application; The power density is measured and choose the best one
... Show MoreKE Sharquie, AA Noaimi, EA Al-Janabi, Our Dermatology Online, 2014 - Cited by 11
S Khalifa E, AM Sabeeh A, AN Adil A, AW Ghassan H…, 2007
In recent decades, there has been increasing interest in wastewater treatment because of its direct impact on the environment and public health. Over time, other forms of treatment have been developed and modified, including extended aeration. This process is included in the suspended growth system. In this paper, a comparative study was conducted between the efficiency of the extended aeration plant and that of the trickling filter plant in removal of BOD and COD. The method of comparison was done by knowing the value of the pollutant before and after the treatment and then extract the removal ratio of each pollutant within each plant. The results showed that the percentage of removal of BOD in the trickling filte
... Show MoreThis article comprehensively examines the history, diagnosis, genetics, diversity, and treatment of SARS-CoV-2. It details the emergence of coronaviruses over the past 50 years, including the coronavirus from 2019 and its subsequent mutations, along with updated information about this virus. This review explains the development and nomenclature of coronaviruses, their cellular invasion through glycoprotein spikes binding to ACE-2 receptors, and the mechanism of cell entry via endocytosis. Diagnosis methods for COVID-19, including nucleic acid amplification, serology, and imaging techniques like chest X-ray and CT scan tests, are discussed. Treatment approaches for COVID-19 are outlined, emphasizing healthcare, antiviral medications like Rem
... Show MoreThis study is concerned with the effect of Deep Cryogenic Treatment (DCT) at liquid nitrogen temperature (-196 o C) on the mechanical properties and performance of low carbon steel (A858). The tests specimens were divided in to two groups, the first group was subjected to the conventional heat treatment of normalizing, and the second group was also normalized then subjected to (DCT). The results have shown that after (DCT), the Hardness, Tensile properties and the impact energy absorbed were all slightly increased. However the fatigue test showed some positive improvement in fatigue limit by 20(N/mm2 ), and the volume wear rates at different loads were significantly decreased after (DCT). The changes in microstructure due to (DCT) were c
... Show MoreKE Sharquie, AA Noaimi, AG Al-Ghazzi, 2010 - Cited by 2
Turbidity is a visual property of water that expresses the amount of suspended substances in the water. Its presence in quantities more significant than the permissible limit makes the water undrinkable and reduces the effectiveness of disinfectants in treating pathogens. On this basis, turbidity is used as a basic indicator for measuring water quality. This study aims to evaluate the removal efficiency of AL- Muthanna WTP. Water turbidity was used as a basic parameter in the evaluation, using performance improvement evaluation and data from previous years (2016 to 2020). The average raw water turbidity was 26.7 NTU, with a minimum of 14 NTU, with a maximum of 48 NTU. Water turbidity value for 95% of settling daily readi
... Show MoreBioethanol produced from lignocellulose feedstock is a renewable substitute to declining fossil fuels. Pretreatment using ultrasound assisted alkaline was investigated to enhance the enzyme digestibility of waste paper. The pretreatment was conducted over a wide range of conditions including waste paper concentrations of 1-5%, reaction time of 10-30 min and temperatures of 30-70°C. The optimum conditions were 4 % substrate loading with 25 min treatment time at 60°C where maximum reducing sugar obtained was 1.89 g/L. Hydrolysis process was conducted with a crude cellulolytic enzymes produced by Cellulomonas uda (PTCC 1259).The maximum amount of sugar released and hydrolysis efficiency were 20.92 g/L and 78.4 %, respectively. Sugars
... Show More