Preferred Language
Articles
/
QRbMQYcBVTCNdQwC6z7j
Hot Press Bonding of Aluminum Alloy AA6061-T6 to Polyamide and Polyamide Composites
...Show More Authors
Abstract<p>In this study, aluminum alloyAA6061-T6 was joined by a hot press process with three types of material; polyamide PA 6.6 (nylon), 1% carbon nanotube/PA6.6 and 30% carbon fiber/PA6.6 composites. Three parameters were considered in the hot pressing; temperature (180, 200 and 220°C), pressure (2, 3, 4, 5 and 6 bar) and time of pressing (1, 2, 3, 4 and 5 minutes for 200ºC, and 0.25, 0.5, 0.75, 1 and 1.25 minutes for220ºC). Applied pressure has great effect on shear strength of the joint, corresponding to bonding time and temperature. Maximum shear strength was 8.89MPa obtained for PA6.6 at bonding conditions of 4 bar, 220ºC and 0.75 minute. For 30% carbon fiber/PA6,6 shear recorded was 8MPa at 4 bar, 220°C and 1 minute, while 1% carbon nanotube/PA6.6 was registered at 8MPa at 4 bar, 220ºC and 0.75 minute. Mechanical interlocking of polyimide in anodizing surface is 8μm approximately. The melting point and glass transmission temperature of polyimide and composites are decreased after hot pressing.</p>
Scopus Crossref
View Publication
Publication Date
Tue May 28 2024
Journal Name
Journal Of Optics
Study of the optical properties of aluminum films and the effect of current frequency on plasma parameters
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Conductivity of AC, Loss Tangent, and Relative Permittivity for Composites of PVC Paste/Graphite Electrode Waste
...Show More Authors

The behavior of AC conductivity (σac), loss tangent (tan δ), and relative permittivity (ε′) for composites of PVC-P/graphite electrode waste (GEW) was investigated, and a qualitative explanation was provided as a function of PVC-P weight fractions (0, 5, 10, 15, 20, and 25) wt. percent, temperature (30-90) °C, and frequency (100Hz-2MHz). The behaviors of the composites' ac. conductivity and impedance as a frequency function and temperature have been examined. The permittivity was shown to rise with increasing temperature (Tg). The relative permittivity increased as the GEW filler concentration increased and was highest in the low-frequency range; nevertheless decreased as the frequency increased.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Effect of nano and micro SiO2 weight percent on interlaminar fracture toughness of woven roving/ epoxy composites
...Show More Authors

Effect of nano and micro SiO2 particles with different weight percent (2,4,6,8 and 10) %wt on the Interlaminar fracture toughness (GIc) of 16-plies of woven roving glass fiber /epoxy composites prepared by hand lay – up technique were investigated. The specimens were tested using DCB test (mode I).
Area method was used to compute the interlaminar fracture toughness. The results show that, GIc would increase with the increasing in the filler content, the main failure in microcomposites and nanocomposites was delamination in the layers, the delamination reduced with increasing in the filler content.

View Publication Preview PDF
Publication Date
Fri Jun 30 2017
Journal Name
Journal Of Engineering
Aluminium Matrix Composites Fabricated by Friction Stir Processing A Review
...Show More Authors

      Aluminum alloys widely use in production of the automobile and the aerospace because
they have low density, attractive mechanical properties with respect to their weight, better
corrosion and wear resistance, low thermal coefficient of expansion comparison with traditional
metals and alloys. Recently, researchers have shifted from single material to composite materials
to reduce weight and cost, improve quality, and high performance in structural materials.
Friction stir processing (FSP) has been successfully researched for manufacturing of metal
matrix composites (MMCs) and functional graded materials (FGMs), find out new possibilities
to chemically change the surfaces. It is shown th

... Show More
View Publication Preview PDF
Publication Date
Thu Jul 16 2020
Journal Name
Polymer Bulletin
Fabrication and evaluation of structural, thermal, mechanical and optical behavior of epoxy–TEOS/MWCNTs composites for solar cell covering
...Show More Authors

View Publication
Crossref (35)
Crossref
Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Analysis of Temperature and Residual Stress Distribution in CO2 Laser Welded Aluminum 6061 Plates Using FEM
...Show More Authors

This paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
The The Use of Copper and Aluminum Electrodes for Energy Production in a Microbial Fuel Cell
...Show More Authors

Microbial fuel cell is a device that uses the microorganism metabolism for the production of electricity under specific operating conditions. Double chamber microbial fuel cell was tested for the use of two cheap electrode materials copper and aluminum for the production of electricity under different operating conditions. The investigated conditions were concentration of microorganism (yeast) (0.5- 2 g/l), solutions temperature (33-45 oC) and concentration of glucose as a substrate (1.5- 6 g/l). The results demonstrated that copper electrode exhibit good performance while the performance of aluminum is poor. The electricity is generated with and without the addition of substrate. Addition of glucose substrate

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Oct 15 2023
Journal Name
Bionatura
Surface assessment of CNC laser treated commercially pure Titanium and Ti 13 Zr 13 Nb alloy
...Show More Authors

This study aimed to evaluate the surface changes of commercial pure Titanium disks (CP Ti) and the Ti 13Nb 13 Zr (Alloy) with a zigzag pattern of laser surface treatment. In vitro, experimental study of CNC Laser treatment on the CP Ti and Alloy disks. Texturing the surfaces of CP Ti and Alloy disks via CNC laser, the sample disks were analyzed using surface roughness, wettability and FESEM. The FESEM revealed a proper increase in the surface texturing and roughness on macro and micro measures without crack formation or dramatic change of the core substance of the CP Ti and Alloy disks. The CNC laser is an effective and suitable method for surface texturing CP Ti and Alloy for dental implantology. Keywords: Commercial pure Titanium;

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Theoretical calculation for sputtering yield of beryllium copper alloy bombarded by Argon, nitrogen and oxygen ions
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 18 2020
Journal Name
Modelling And Simulation In Engineering
Temperature and Stress Evaluation during Three Different Phases of Friction Stir Welding of AA 7075-T651 Alloy
...Show More Authors

The current study performs an explicit nonlinear finite element simulation to predict temperature distribution and consequent stresses during the friction stir welding (FSW) of AA 7075-T651 alloy. The ABAQUS® finite element software was used to model and analyze the process steps that involve plunging, dwelling, and traverse stages. Techniques such as Arbitrary Lagrangian–Eulerian (ALE) formulation, adaptive meshing, and computational feature of mass scaling were utilized to simulate sequence events during the friction stir welding process. The contact between the welding tool and workpiece was modelled through applying Coulomb’s friction model with a nonlinear friction coefficient value. Also, the model considered the effect of nonlin

... Show More
View Publication Preview PDF
Scopus (43)
Crossref (25)
Scopus Clarivate Crossref