Preferred Language
Articles
/
QIbxY4YBIXToZYALZYku
Output Feedback Adaptive Sliding Mode Control Design for a Plate Heat Exchanger
...Show More Authors

The heat exchanger is a device used to transfer heat energy between two fluids, hot and cold. In this work, an output feedback adaptive sliding mode controller is designed to control the temperature of the outlet cold water for plate heat exchanger. The measurement of the outlet cold temperature is the only information required. Hence, a sliding mode differentiator was designed to estimate the time derivative of outlet hot water temperature, which it is needed for constructing a sliding variable. The discontinuous gain value of the sliding mode controller is adapted according to a certain adaptation law. Two constraints which imposed on the volumetric flow rate of outlet cold (control input) were considered within the rules of the proposed adaptation law in this work. These are the control input is a positive quantity, and it limited by a maximum value. The maximum allowable desired outlet cold water has been estimated as function of heat exchanger parameters and maximum control input. The simulation results demonstrate the performance of the proposed adaptive sliding mode control where the outlet cold water was forced to follow desired temperature equal to 45𝑜 . Additionally, the robustness of the proposed controller was tested for the case where the cold water inlet temperature is not constant, and also for the case of heat exchanger parameters uncertainty. The results were revealed the robustness of the proposed controller.

Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 10 2022
Journal Name
International Journal Of Mathematics In Operational Research
Modelling time-series process of an agricultural crop production process by EWMA quality control chart
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Parametric Study of Mixed Convective Radiative Heat Transfer in an Inclined Annulus
...Show More Authors

The steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortr

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Parametric Study of Mixed Convective Radiative Heat Transfer in an Inclined Annulus
...Show More Authors

The steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortran

... Show More
Publication Date
Thu Jan 07 2016
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technology
Effect Of heat Treatment On The Optical Properties Of CuInSe2 Thin Films
...Show More Authors

CuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.

Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Mathematical Modelling And Numerical Optimisation
Reconstruction of an orthotropic thermal conductivity from non-local heat flux measurements
...Show More Authors

View Publication
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technolog
Effect Of heat Treatment On The Optical Properties Of CuInSe2 Thin Films
...Show More Authors

CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.

View Publication
Publication Date
Sun Dec 31 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Heat Transfer and Hydrodynamic in Internal Jacket Airlift Bioreactor with Microbubble Technology
...Show More Authors

   Integration of laminar bubbling flow with heat transfer equations in a novel internal jacket airlift bioreactor using microbubbles technology was examined in the present study. The investigation was accomplished via Multiphysics modelling to calculate the gas holdup, velocity of liquid recirculation, mixing time and volume dead zone for hydrodynamic aspect. The temperature and internal energy were determined for heat transfer aspect.

   The results showed that the concentration of microbubbles in the unsparged area is greater than the chance of large bubbles with no dead zones being observed in the proposed design.  In addition the pressure, due to the recirculation velocity of liquid around the draft

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 03 2017
Journal Name
Chalcogenide Letters
INFLUENCE OF HEAT TREATMENT ON SOME PHYSICAL PROPERTIES OF Zn0.9Sn0.1S THIN FILMS
...Show More Authors

Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Heat Transfer and Thermal Expansion of Coefficient EP -(MWCNT/x-TiO2)Nanocomposites
...Show More Authors

The thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 04 2013
Journal Name
1st Post – Graduate Students Conference, Alnahrain University / College Of Engineering
Convection Heat Transfer in Horizontal Annulus Porous Media with Rotating Outer Cylinder
...Show More Authors

A numerical investigation of mixed convection in a horizontal annulus filled with auniform fluid-saturated porous medium in the presence of internal heat generation is carried out.The inner cylinder is heated while the outer cylinder is cooled. The forced flow is induced by thecold outer cylinder rotating at a constant angular velocity. The flow field is modeled using ageneralized form of the momentum equation that accounts for the presence of porous mediumviscous, Darcian and inertial effects. Discretization of the governing equations is achieved usinga finite difference method. Comparisons with previous works are performed and the results showgood agreement. The effects of pertinent parameters such as the Richardson number and internalRay

... Show More