Background: Accurate measurement of a patient’s height and weight is an essential part of diagnosis and therapy, but there is some controversy as to how to calculate the height and weight of patients with disabilities. Objective: This study aims to use anthropometric measurements (arm span, length of leg, chest circumference, and waist circumference) to find a model (alternatives) that can allow the calculation of the height and the body weight of patients with disabilities. Additionally, a model for the prediction of weight and height measurements of patients with disabilities was established. Method: Four hander patients aged 20-80 years were enrolled in this study and divided into two groups, 210 (52.5%) male and 190 (47.5%) female. Result: A significant correlation was noted between body height and arm span, as well as between body height and length of leg in all study groups. The body weight and the ratio of arm span or leg length to the sum of chest and waist circumferences were found to have a negative significant correlation. Model equations were derived to estimate the height and body weight according to anthropometric measurements. Conclusion: Anthropometric measurements can be used to create a model for calculating the body height and body weight of patients with disabilities and which can be considered an alternative to measurements that can be made on otherwise healthy subjects.
The study aimed to evaluate the benefits of transferrin saturation percentage (TSAT) and serum ferritin in assessing body iron status, which can influence erythropoietin treatment in patients with ESRD. Forty end-stage renal disease patients on regular hemodialysis participated in this study. Clinical data were obtained. Serum iron, total iron binding capacity, transferrin saturation, ferritin, albumin, creatinine, and C-reactive protein were investigated. Thirty healthy people were enrolled as a control group. ESRD patients had a mean age of 45.1±13.9 years, with 60% being males. They exhibited significantly lower hematocrit (25.3±6.5%), and higher platelet (285.7±148.1x10^9/L) and WBC (9.4±3.1x10^9/L) counts compared to healthy contro
... Show MoreRheumatoid arthritis is a chronic inflammatory autoimmune disease its etiology is unknown. The classical autoimmune diseases, have adaptive immune genetic associations with autoantibodies and major histocompatibility complex (MHC) class II such as rheumatoid arthritis (RA), diabetes mellitus type two (DM II). Serum of99 males suffering from RA without DMII as group (G1), 45 males suffering from RA with DM II as group (G2) and 40 healthy males as group (G3) were enrolled in this study to estimation of alkaline phosphates (ALP), C-reactive protein (CRP) and Pentraxin-3(PTX). Results showed a highly significant increase in PTX3 levels in G1 and G2 compared to G3 and a significant decrease in G1comparing to G2. Results also revealed a significa
... Show MoreNon-alcoholic fatty liver disease (NAFLD) is one of chronic liver and defines by fat accumulation ≥5% in liver which can progresses to non-alcoholic steatohepatitis (NASH). NAFLD related to obesity as well as non obese individuals. Adiponectin is a cytokine secreted from adipose tissue involved NAFLD pathogenesis and liked with obesity. Irisin is a myokine, has a convenient effect against metabolic diseases such as obesity, disylipemia diabetes type 2 and reversed liver steatosis and may be related with NAFLD. Vitamin D is one of the fat soluble vitamins and more precisely as a pro-hormone through its metabolite (1,25(OH)2 cholecalciferol) the major steroid hormone. After the skin exposure to the light, vitamin D undergoes to
... Show MoreAbstract:
Background: Retinol binding protein 4 (RBP4), an adipokine that participate in a lipid metabolism or insulin resistance through a complex regulatory network. Recently, RBP4 was reported to be associated with many cardiovascular diseases (CVDs) risk factors in patients of type 2 diabetes mellitus (T2DM). This study aims to study the correlation of serum RBP4 with some markers of glycemic control, dyslipidemia, hypertension and obesity in T2DM Iraqi patients.
Subjects and Methods: one hundred fifty participants were enrolled in this coss-sectional study, 120 of participants were T2DM patients and 30 were apparently healthy individuals to serve as control gro
... Show MoreBackground: Diabetes and periodontitis are considered as chronic diseases with a bidirectional relationship between them. This study aimed to determine and compare the severity of periodontal health status and salivary parameters in diabetic and non-diabetic patients with chronic periodontitis. Materials and Methods: Seventy participants were enrolled in this study. The subjects were divided into three groups: Group I: 25 patients had type 2 diabetes mellitus with chronic periodontitis, Group 2: 25 patients had chronic periodontitis and with no history of any systemic diseases, Group 3: 20 subjects had healthy periodontium and were systemically healthy. Unstimulated whole saliva was collected for measurement of salivary flow rate and pH.
... Show MoreThe objective of this study is to attempt to provide a quantitative analysis to the causes of unemployment in Iraq and its mechanisms of generation, as well as a review of the most important types of both visible and invisible unemployment, and an attempt to measure the disguised unemployment and analyze the causes. The problem of the research lies in the fact that the Iraqi Economy has been suffered for a long time although its characterized by abundant physical and natural resources, from the existence of the phenomenon of unemployment in the previous two types. Causing a lot of economic problems, represented by the great waste of resources and
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show More