Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper
Traffic management at road intersections is a complex requirement that has been an important topic of research and discussion. Solutions have been primarily focused on using vehicular ad hoc networks (VANETs). Key issues in VANETs are high mobility, restriction of road setup, frequent topology variations, failed network links, and timely communication of data, which make the routing of packets to a particular destination problematic. To address these issues, a new dependable routing algorithm is proposed, which utilizes a wireless communication system between vehicles in urban vehicular networks. This routing is position-based, known as the maximum distance on-demand routing algorithm (MDORA). It aims to find an optimal route on a hop-by-ho
... Show MoreDocument source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing
... Show MoreAbstract Rasha Hameid Jehad Baghdad University Background: The high reactivity of hydrogen peroxide used in bleaching agents have raised important questions on their potential adverse effects on physical properties of restorative materials. The purpose of this in vitro study was to evaluate the effect of in-office bleaching agents on the microhardness of a new Silorane-based restorative material in comparison to methacrylate-based restorative material. Materials and method: Forty specimens of Filtek™ P90 (3M ESPE,USA) and Filtek™ Supreme XT (3M ESPE, USA) of (8mm diameter and 3m height) were prepared. All specimens were polished with Sof-Lex disks (3M ESPE, USA). All samples were rinsed and stored in incubator 37˚C for 24 ho
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreSymmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a rand
... Show More