Preferred Language
Articles
/
QBcMXJIBVTCNdQwCCK3j
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).

Scopus Crossref
View Publication
Publication Date
Wed Feb 10 2016
Journal Name
ألمؤتمر الدولي العلمي الخامس للاحصائيين العرب/ القاهرة
Proposition of Modified Genetic Algorithm to Estimate Additive Model by using Simulation
...Show More Authors

Often phenomena suffer from disturbances in their data as well as the difficulty of formulation, especially with a lack of clarity in the response, or the large number of essential differences plaguing the experimental units that have been taking this data from them. Thus emerged the need to include an estimation method implicit rating of these experimental units using the method of discrimination or create blocks for each item of these experimental units in the hope of controlling their responses and make it more homogeneous. Because of the development in the field of computers and taking the principle of the integration of sciences it has been found that modern algorithms used in the field of Computer Science genetic algorithm or ant colo

... Show More
Preview PDF
Publication Date
Tue Aug 30 2022
Journal Name
Acta Scientiarum Polonorum Administratio Locorum
Cities' urban resilience in the face of urban sprawl challenges
...Show More Authors

Motives: The research deals with the issue of urban sprawl on agricultural lands. It is an urban problem caused by rapid urbanization and poor planning. It is considered one problem that threatens cities with environmental and health disasters. It also threatens agricultural life and the green belt surrounding cities. Changes in urban sprawl on agricultural land are associated with complex processes that lead to multiple social, economic, political, and environmental risks and thus pose a threat and an obstacle to the sustainability of cities. Aim: The research aims to study and evaluate the reality of the city of Baghdad and the extent of its ability and flexibility to withstand the disaster of urban sprawl on agricultural lands. T

... Show More
View Publication
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Fri May 16 2014
Journal Name
International Journal Of Computer Applications
Design and Implementation of Real Time Face Recognition System (RTFRS)
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Wed Jan 09 2002
Journal Name
Journal Of Pharmaceutical Negative Results¦ Volume
Antibacterial Improvement of Disease-Protective Face Masks Using Gold Nanoparticles
...Show More Authors

In this work, the antibacterial effectiveness of face masks made from polypropylene, against Candida albicans and Pseudomonas aeruginosa pathogenic was improved by soaking in gold nanoparticles suspension prepared by a one-step precipitation method. The fabricated nanoparticles at different concentrations were characterized by UV-visible absorption and showed a broad surface Plasmon band at around 520 nm. The FE-SEM images showed the polypropylene fibres highly attached with the spherical AuNPs of diameters around 25 nm over the surfaces of the soaked fibres. The Fourier Transform Infrared Spectroscopy (FTIR) of pure and treated face masks in AuNPs conform to the characteristics bands for the polypropylene bands. There are some differences

... Show More
Scopus (2)
Scopus
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Governance and role in increasing the tax outlet in Iraq
...Show More Authors

The goal of the research is to highlight the role of the governance and its characteristics in increasing the tax outcome by implementing the laws, regulations and annual controls issued annually from the general authority for taxation for the financing of the general treasury of the state, Additional development and economic capacity, As the search shares a view of the governance and its characteristics and its ideas from increasing tax output. The analytical transparent approach was used by adopting the practice of practicalities of the general authority for tax For quotations in the senior cabinet section ,the revealing of the ongoing operations was relied on the revenue for each financial year, The tools adopted in the process of ana

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 22 2021
Journal Name
Samarra Journal Of Pure And Applied Science
Toward Constructing a Balanced Intrusion Detection Dataset
...Show More Authors

Several Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff

... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Chemical Engineering Research And Design
Improvements in hydrogen evolution through a new design of coupling inexpensive nanocomposite electrocatalysts driven by high-voltage electrolysis
...Show More Authors

View Publication
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (59)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Bitcoin Prediction with a hybrid model
...Show More Authors

In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc

... Show More
Scopus (14)
Scopus
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Concept And Importance Of Detection Failureś Possibilities Of Corporation Proposed Model For Application In The Iraqi Environment
...Show More Authors

Research aims to shed light on the concept of corporate failures , display and analysis the most distinctive models used to predicting corporate failure; with suggesting  a model to reveal the probabilities of corporate failures which including internal and external financial and non-financial indicators, A tested is made for the research objectivity and its indicators weight and by a  number of academics professionals experts, in addition to  financial analysts  and have concluded a set of conclusions ,  the most distinctive of them that failure is not considered a sudden phenomena for the company and its stakeholders , it is an Event passes through numerous stages; each have their symptoms that lead eve

... Show More
View Publication Preview PDF
Crossref