During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Due to the great evolution in digital commercial cameras, several studies have addressed the using of such cameras in different civil and close-range applications such as 3D models generation. However, previous studies have not discussed a precise relationship between a camera resolution and the accuracy of the models generated based on images of this camera. Therefore the current study aims to evaluate the accuracy of the derived 3D buildings models captured by different resolution cameras. The digital photogrammetric methods were devoted to derive 3D models using the data of various resolution cameras and analyze their accuracies. This investigation involves selecting three different resolution cameras (low, medium and
... Show MoreSummary
The subject ( meaning of added verbs) is one of the main subjects
which study in morphology since in Arabic language. It is include the meaning
of each format, and the increased meaning occurred by this increment in the
verbs.
The (strain) is one of very important meaning in this subject, it takes a
wide area of morphology studies, and interesting of scientists and
researchists.
There are two famous formats for this meaning; (infa la انفع
ل ), and (ifta
la افتع
ل ). Also There are another formats for the same meaning, but less than
the first two in use, they are; (taf ala تفعّ
ل ), (tafa ala تفاع
ل ), (taf lala ) ,(تفعل
ل
ifanlala افعنلل ), (ifanla .(
Pesticides serve a crucial function in contemporary farming practices, safeguarding agricultural crops against pest infestations and boosting production outputs. However, indiscriminate use has caused environmental and human health damage. This study aimed to develop and validate a gas chromatography-flame ionization detection (GC-FID) methodology for the direct and routine analysis of spiromesifen residues in soil, leaves, and tomato fruits. The proposed method prioritizes simplicity by avoiding derivatization steps, offering advantages over existing approaches that utilize lengthy multi-step extraction or derivatization prior to GC analysis. A key novelty of this work is the development of a QuEChERS extraction coupled directly to GC-FID
... Show MoreThe purpose of this research is to identify the effect of the use of project-based learning in the development of intensive reading skills at middle school students. The experimental design was chosen from one group to suit the nature of the research and its objectives. The research group consisted of 35 students. For the purpose of the research, the following materials and tools were prepared: (List of intensive reading skills, intensive reading skills test, teacher's guide, student book). The results of the study showed that there were statistically significant differences at (0.05) in favor of the post-test performance of intensive reading skills. The statistical analysis also showed that the project-based learning approach has a high
... Show MoreStereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MoreThe most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreThe present study aims to identify the most and the least common teaching practices among faculty members in Northern Border University according to brain-based learning theory, as well as to identify the effect of sex, qualifications, faculty type, and years of experiences in teaching practices. The study sample consisted of (199) participants divided into 100 males and 99 females. The study results revealed that the most teaching practice among the study sample was ‘I am trying to create an Environment of encouragement and support within the classroom which found to be (4.4623). As for the least teaching practice was ‘I use a natural musical sounds to create student's mood to learn’ found to be (2.2965). The study results also in
... Show MoreCryptography is a major concern in communication systems. IoE technology is a new trend of smart systems based on various constrained devices. Lightweight cryptographic algorithms are mainly solved the most security concern of constrained devices and IoE systems. On the other hand, most lightweight algorithms are suffering from the trade-off between complexity and performance. Moreover, the strength of the cryptosystems, including the speed of the algorithm and the complexity of the system against the cryptanalysis. A chaotic system is based on nonlinear dynamic equations that are sensitive to initial conditions and produce high randomness which is a good choice for cryptosystems. In this work, we proposed a new five-dimensional of a chaoti
... Show MoreSoftware-Defined Networking (SDN) has evolved network management by detaching the control plane from the data forwarding plane, resulting in unparalleled flexibility and efficiency in network administration. However, the heterogeneity of traffic in SDN presents issues in achieving Quality of Service (QoS) demands and efficiently managing network resources. SDN traffic flows are often divided into elephant flows (EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes and long durations, account for a small amount of total traffic but require disproportionate network resources, thus causing congestion and delays for smaller MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they accou
... Show MoreMost Internet-tomography problems such as shared congestion detection depend on network measurements. Usually, such measurements are carried out in multiple locations inside the network and relied on local clocks. These clocks usually skewed with time making these measurements unsynchronized and thereby degrading the performance of most techniques. Recently, shared congestion detection has become an important issue in many computer networked applications such as multimedia streaming and
peer-to-peer file sharing. One of the most powerful techniques that employed in literature is based on Discrete Wavelet Transform (DWT) with cross-correlation operation to determine the state of the congestion. Wavelet transform is used as a de-noisin