During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Intrusion detection systems (IDS) are useful tools that help security administrators in the developing task to secure the network and alert in any possible harmful event. IDS can be classified either as misuse or anomaly, depending on the detection methodology. Where Misuse IDS can recognize the known attack based on their signatures, the main disadvantage of these systems is that they cannot detect new attacks. At the same time, the anomaly IDS depends on normal behaviour, where the main advantage of this system is its ability to discover new attacks. On the other hand, the main drawback of anomaly IDS is high false alarm rate results. Therefore, a hybrid IDS is a combination of misuse and anomaly and acts as a solution to overcome the dis
... Show MoreThe aim of this essay is to use a single-index model in developing and adjusting Fama-MacBeth. Penalized smoothing spline regression technique (SIMPLS) foresaw this adjustment. Two generalized cross-validation techniques, Generalized Cross Validation Grid (GGCV) and Generalized Cross Validation Fast (FGCV), anticipated the regular value of smoothing covered under this technique. Due to the two-steps nature of the Fama-MacBeth model, this estimation generated four estimates: SIMPLS(FGCV) - SIMPLS(FGCV), SIMPLS(FGCV) - SIM PLS(GGCV), SIMPLS(GGCV) - SIMPLS(FGCV), SIM PLS(GGCV) - SIM PLS(GGCV). Three-factor Fama-French model—market risk premium, size factor, value factor, and their implication for excess stock returns and portfolio return
... Show MoreIn this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the nanoparticles of anatase TiO2 have good cata
... Show MoreIn this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the
... Show MoreIn light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show More